Sericin from the cocoons of Silkworm, Antheraea Mylitta (L) and Bombyx Mori (L) for the Reduction in Hydrogen Peroxide Induced Oxidative Stress in Feline Fibroblasts

Authors

  • Vitthalrao Bhimasha Khyade  (A).Sericulture Unit, Malegaon Sheti Farm, Agricultural Development Trust Baramati, Shardanagar, (Malegaon Khurd) Post Box No - 35, Baramati, Pune, Maharashtra, India , (B). Head, Department of Zoology, Shardabai Pawar Mahila Mahavidyalaya, Shardanagar Tal. Baramati Pune, Maharashtra, India , (C). Dr. APIS", Shrikrupa Residence, Teachers Society, Malegaon Colony (Baramati) Pune, Maharashtra, India
  • Shinya Yamanaka  Senior Investigator, Gladstone Institute of Cardiovascular Disease 1650 OWENS STREET, SAN FRANCISCO, CA 94158

Keywords:

Antioxidant Activity , Fibroblast Cell Line, Hydrogen Peroxide, Oxidative Stress, Moracin

Abstract

The silk fiber of cocoons of silkworms of both the families consist of two major proteins, fibroin and sericin. The fibrion forms central core and sericin forms envelop. Fibroin and sericin, of mulberry silkworm, Bombyx mori deserve appreciable physioc-chemical properties and therefore, they are now recognized as excellent biomaterials in the field of tissue engineering, biotechnology and therapy. Sericin contributes about 20-30 per cent of total cocoon weight. It is characterized by its high content of serine and 18 amino acids, including essential amino acids. There are different methods of isolation of sericin from silk thread. Solubility, molecular weight, and gelling properties of sericin depend on the method of isolation. It has wide applications in pharmaceuticals and cosmetics such as, wound healing, bioadhesive moisturizing, antiwrinkle and antiaging. The present attempt is concerned with assessment of potential regarding antioxidant activity of Sericin from silk from cocoons of non-mulberry silkworm, Antheraea mylitta And mulberry silkworm, Bombyx mori (L) through the use of hydrogen peroxide induced stress in skin fibroblast cell line culture ( AH927). Cells treated with sericin exhibited significant cell viability comparable to that of control group (P ?0.05). The fibroblasts pre-incubated with sericin of both the species at 100 ng/ml had significantly decreased (P ?0.01) catalase activity. The oxidative stress through hydrogen peroxide was found responsible for significantincrease (P ?0.01) in the release of enzyme (LDH) in comparison with untreated control. The sericin treatment definitely serving to restore the original membrane integrity of the cells. The aqueous form of silk sericin, from a natural source like silkworm cocoon, serve as ideal antioxidant source and may be used to treat the cancer cells.

References

  1. Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298-300.
  2. Datta, K., Babbar, P., Srivastava, T., Sinha, S. and Chattopadhyay, P. (2002) p53 dependent apoptosis in gliomacell lines in response to hydrogen peroxide induced oxidative stress. Int. J. Biochem. Cell Biol. 34, 148-157.
  3. Rada B, Leto TL; Leto (2008). "Oxidative innate immune defenses by Nox/ Duox family NADPH oxidases" (PDF). Contrib Microbiol. Contributions to Microbiology 15: 164–87. doi:10.1159/000136357. ISBN 978-3-8055-8548-4. PMC 2776633. PMID 18511861. — Review
  4. Conner GE, Salathe M, Forteza R; Salathe; Forteza (December 2002). "Lactoperoxidase and Hydrogen Peroxide Metabolism in the Airway". Am J RespirCrit Care Med166 (12): S57–61. doi:10.1164/rccm.2206018. PMID 12471090.
  5. Brooker, Robert J. (2011). Genetics: analysis and principles (4th ed.). McGraw-Hill Science. ISBN 978-0-07-352528-0.
  6. Arora, S., Kaur, K. and Kaur, S. (2003) Indian medicinal plants as a reservoir of protective phytochemicals.Teratog.Carcinog.Mutagen.1, 295-300.
  7. Hashim, M. S., Lincy, V., Remya, V., Teena, M. and Anila, L. (2005) Effect of polyphenolic compounds from Coriandrum sativum on H2O2-induced oxidative stress in human lymphocytes. Food Chem. 92, 63-65.
  8. Verhoeyen, M. E., Bovy, A., Collins, G., Muir, S., Robinson, S., de Vos, C. H. and Colliver, S. (2002) Increasing antioxidant levels in tomatoes through modificationof the flavonoid biosynthetic pathway. J. Exp. Bot.53, 2099-2106.
  9. Yang, Y., Wang, J., Xu, C., Pan, H. and Zhang, Z. (2006) Maltol inhibits apoptosis of human neuroblastoma cells induced by hydrogen peroxide. J. Biochem. Mol. Biol. 39,145-149.
  10. Ghosh, A., Sarkar, K., Sil, P. C. (2006) Protective Effect of a 43 kD Protein from the Leaves of the Herb, Cajanus indicus L on Chloroform Induced Hepatic-disorder. J. Biochem. Mol. Biol. 39, 197-207.
  11. Han, Y. T., Han, Z. W., Yu, G. Y., Wang, Y. J., Cui, R. U.and Wang, C. B. (2004) Inhibitory effect of polypeptide from Chlamys farreri (Marine Bivalve : Farrer's scallop or Chinese scallop )on ultraviolet A-induced oxidativedamage on human skin fibroblasts in vitro. Pharmacol.Res. 49, 265-274.
  12. Altman, G. H., Jakuba, C., Calabro, T., Horan, R. L., Chen,J., Lu, H., Richmond, J. and Kaplan, D. L (2003) Silk-based biomaterials. Biomaterials 24, 401-416.
  13. Jin, H. J., Chen, J., Karageorgiou, V., Altman, G. H. and Kaplan, D. L. (2004) Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 25,1039-1047.
  14. Meinel, L., Hofmann, S., Karageorgiou, V., Kirker-Head,C., McCool, J., Gronowicz, G., Zichner, L., Langer, R., Novakovic, G. V. and Kaplan, D. L. (2005) The inflammatoryresponses to silk films in vitro and in vivo. Biomaterials26, 147-155.
  15. Vepari, C. and Kaplan, D. L. (2007) Silk as a biomaterial. Prog.Polym. Sci. 32, 991-997.
  16. Wang, Y., Kim, H. J., Vunjak-Novakovic, G. and Kaplan, D. L. (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27, 6064-6082.
  17. Zhang, Y. Q. (2002) Applications of natural silk protein sericin in biomaterials. Biotechnol. Adv. 20, 91-100.
  18. Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N.and Nomura, M. (1998) Silk protein sericin inhibits lipid peroxidation and tyrosinase activity. Biosci.Biotechnol.Biochem.62, 145-147.
  19. Zhaorigetu, S., Yanaka, N., Sasaki, M., Watanabe, H. andKato, N. (2003) Inhibitory effects of silk protein, sericin on UVB-induced acute damage and tumor promotion by reducing oxidative stress in the skin of hairless mouse. J. Photochem. Photobiol. B, Biol. 71, 11-17.
  20. Zhang, Y. Q., Tao, M. L., Shen, W. D., Mao, J. P. and Chen, Y. H. (2006) Synthesis of silk sericin peptides-L-asparaginase(SS-ASNase) bioconjugates and their characterization.J. Chem. Technol. Biotechnol. 81, 136-145.
  21. Chen, Q. and Ames, B. N. (1994) Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblastF65 cells. Proc. Natl. Acad. Sci. USA 91, 4130-4134.
  22. Imlay, J. A., Chin, S. M. and Linn, S. (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240, 640-642.
  23. Zuliani, T., Denis, V., Noblesse, E., Schnebert, S., Andre,P., Dumas, M. and Ratinaud, M. H. (2005) Hydrogen peroxide-induced cell death in normal human keratinocytesis differentiation dependent. Free Radic. Biol. Med. 38,307-316.
  24. Tesco, G., Latorraca, P., Piersanti, S., Sorbi, S., Piacentini,S. and Amaducci, L. (1992) Free radical injury in skin cultured fibroblasts from Alzheimer's disease patients. Ann. N. Y. Acad. Sci. 673, 149-153.
  25. Ahmad, S. and Pardini, R. S. (2000) Mechanisms for regulating oxygen toxicity in phytophagous insects. Free Radic. Biol. Med. 8, 401-413.
  26. Ennamany, R., Marzetto, S., Saboureau, D. and Creppy, E.E. (1995) Lipid peroxidation induced by Boletus satanas: implication in m5dC variation in Vero cells related to inhibition of cell growth. Cell Biol. Toxicol. 11, 347-354.
  27. Sasaki, M., Kato, N., Watanabe, H. and Yamada, H.(2000) Silk protein, sericin, suppresses colon carcinogenesis induced by 1, 2-dimethylhydrazine in mice.Oncol. Rep. 7, 1049-1052.
  28. Takasu, Y., Yamada, H. and Tsubouchi, K. (2002) Isolationof three main sericin components from the cocoon ofthe silkworm, Bombyx mori. Biosci.Biotechnol.Biochem.66, 2715-2718.
  29. Dash, R., Mukherjee, S. and Kundu, S. C. (2006) Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical tasar silkworm, Antheraea mylitta. Int. J. Biol. Macromol. 38, 255-258.
  30. Dash, R., Ghosh, S. K., Kaplan, D. L. and Kundu, S. C. (2007) Purification and biochemical characterization of a70 kDasericin from tropical tasar silkworm, Antheraea mylitta. Comp. Biochem. Physiol. B Biochem. Mol. Biol.147, 129-134.
  31. Darr, D., Combs, S., Dunston, S., Manning, T. and Pinnell, S. (1992) Topical vitamin C protects porcine skinfrom ultraviolet radiation-induced damage. Br. J. Dermatol.127, 247-253.
  32. Jagetia, G. C., Rajanikant, G. K. and Rao, S. K. (2003)Evaluation of the effect of ascorbic acid treatment in the artificially wounded mouse exposed to different doses of fractionated gamma radiation. Radiat. Res. 159, 371-380.
  33. Katiyar, S. K., Afaq, F., Perez, A. and Mukhtar, H. (2001)Green tea polyphenol (3)-epigallocatechin-3-galate treatment of human skin inhibits ultraviolet radiation-inducedoxidative stress. Carcinogenesis 22, 287-294.
  34. Vaxman, F., Olender, S., Lambert, A., Nisand, G.,Aprahamian, M., Bruch, J. F. (1995) Effect of pantothenicacid and ascorbic acid supplementation on human skin wound healing process. A double-blind, prospective and randomized trial. Eur. Surg. Res. 27, 158-166.
  35. Sofia, S., McCarthy, M. B., Gronowicz, G. and Kaplan, D.L. (2001) Functionalized silk-based biomaterials for boneformation. J. Biomed. Mater. Res. 54, 139-148.
  36. Mossman, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63.
  37. Bergmeyer, H. U. and Bernt, E. (1963) Lactate dehydrogenase;inMethods of Enzymatic Analysis, Bergmeyer, H.U. (ed.), pp 574-579, Academic Press, London, UK.
  38. Maehly, A. C. and Chance, B. (1954) The assay of catalase and peroxidase. Methods Biochem.Anal.1, 357-364.
  39. Niehaus, W. and Samuelson, B. (1968) Formation of malonaldehydefrom phospholipids arachidonate during microsomal lipid peroxidation. Eur. J. Biochem. 6, 126-130.
  40. Norman, T. J. and Baily (1955). Statistical Methods. 2nd ed., Halsted Press,John Wiley & Co., New York, 216 pp. http://deepblue.lib.umich.edu/bitstream/handle/2027.42/24020/0000269.pdf?sequence=1&isAllowed=y
  41. Vitthalrao B. Khyade; Vivekanand V. Khyade and Sunanda V. Khyade( 2013): Use of Moracin in preventing the cancer. Journal Of Environmental Science, Toxicology And Food Technology (IOSR-JESTFT) e-ISSN:2319-2402,p- ISSN: 2319-2399. Volume 4, Issue 5 (May. - Jun. 2013), PP 96-104www.Iosrjournals.Org
  42. Ujwala D. Lonkar and Vitthalrao B. Khyade( 2013 ):Effect of Moracin on DMBA – TPA induced cancer in mice, Mus musculus(L). 2013.Annals of Plant Science Vol. 2 No. 10 (2013):412 – 419. http://ebioscholar.com/ojs/index.php/ap/article/view/628/528
  43. Babita M. Sakdeo and Vitthalrao B. Khyade( 2013 ):EFFECT OF MORACIN ON DMBA – TPA INDUCED SKIN TUMOR FORMATION IN THE MICE. 2013. International Journal of Advanced Biological Research Vol. 3 (4): 576 – 583. www.scienceandnature.org/IJABR.../Index%20IJABR-vol3(4).pdf
  44. Vitthalrao B. Khyade ;Vivekanand V. Khyade ; Sunanda V. Khyade and May-Britt Moser (2014). Influence of Moracin on DMBA-TPA induced skin tumerigenesis in the mouse. International Journal of Bioassays 3 (11): 3510 – 3516. ISSN: 2278-778X. www.ijbio.com
  45. VitthalraoB.Khyade ; Suryakant M. Mundhe and Shakir Ali Syed (2015).Influence of Ethanolic Extractives of Leaves of Mulberry, Morus alba (L) On 7, 12-Dimethylbenz (A) Anthracene (DMBA) Induced Buccal Pouch Carcinoma in Syrian Hamster, Mesocricetusauratus (L). IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN: 2278-3008, p-ISSN:2319-7676. Volume 10, Issue 1 Ver. IV (Jan -Feb. 2015), PP 69-75www.iosrjournals.org
  46. Vitthalrao B. Khyade and Sadhana D. Deshpande (2015). Chemopreventive Efficacy OfEthanolic Extractives Of Leaves Of Mulberry, Morus alba (L) On 7, 12-DimethylbenzAnthracene (DMBA)InducedBuccal Pouch Carcinoma In Syrian Hamster, Mesocricetus auratus (L).International Journal of Recent Scientific Research ,Vol. 6, Issue, 3, pp.3156-3161, March, 2015. www.recentscientific.com
  47. Vitthalrao B. Khyade (2016).Efficiency of Silk sericin from the cocoons of silkworm, Antheraea mylitta (L) and Bombyx mori (L) for treating the Hydrogen Peroxide induced oxidative stress in feline fibroblasts. World Scientific News 44 (2016) 35-49.
  48. Vitthalrao B. Khyade and Sharad G. Jagtap (2016). Antioxidant activity and phenolic compounds of mulberry, Morus alba (L) (Variety: Baramatiwali)International Conference on “Plant Research and Resource Management” And 25th APSI Silver Jubilee Meet 2016 at T. C. College Baramati 11, 12 and 13 February, 2016. Pages: 374 – 377.
  49. Vitthalrao B. Khyade and Aziz Sancer (2016).Treating the 7,12-dimethylbenz(a)anthracene (DMBA) induced buccal pouch carcinoma in Syrian hamster, Mesocricetus auratus (L) with ethanolic extractives of leaves of mulberry, Morus alba (L).World Scientific news 30 (2016): 1-13. www.worldscientificnews.com
  50. Vitthalrao B. Khyade (2016). Antioxidant activity and phenolic compounds of mulberry, Morus alba (L) (Variety: Baramatiwali). Journal of Medicinal Plant Studies(JMPS) ISSN 2320-3862; 4(2): 04- 07.http://www.plantsjournal.com/archives/2016/vol4issue1/PartA/3-6-12.pdf
  51. Pryor, William (1991). "The antioxidant nutrients and disease prevention— what, do we know and what, do we need to find out?" (PDF). Am J Clin Nulr 53 (1 Suppl): 391S–393S.PMID 1985418.
  52. "Correlates of Markers of Oxidative Status in the General Population". Am. J. Epidemiol. 2001. doi:10.1093/aje/154.4.348.
  53. Janero (1990). "Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury". Free Radic Biol Med 9 (6): 515–40.doi:10.1016/0891-5849(90)90131-2. PMID 2079232.
  54. Oldham; Bowen (1998). "Oxidative stress in critical care: is antioxidant supplementation beneficial?" (PDF). J Am Diet Assoc 98 (9): 1001–8. doi:10.1016/S0002-8223(98)00230-2.PMID 9739800.
  55. Panilaitis, B. et al. Macrophage responses to silk. Biomaterials 24, 3079–3085 (2003).
  56. Ogino, M. et al. Interfacial behavior of fatty-acylated sericin prepared by lipase-catalyzed solid-phase synthesis. Biosci Biotechnol Biochem 70, 66–75 (2006).
  57. Ogino, M. et al. Y., Yamada, H. & Tsubouchi, K. Isolation of three main sericin components from the cocoon of the silkworm, bombyx mori. Biosci Biotechnol Biochem 66, 2715–2718 (2002).
  58. Kundu, S. C., Dash, B. C., Dash, R. & Kaplan, D. L. Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Prog Polym Sci33, 998–1012 (2008).
  59. Aramwit, P., Kanokpanont, S., De-Eknamkul, W. & Srichana, T. Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng107, 556–561 (2009).
  60. Zhang, Y. Q. et al. Silk sericin-insulin bioconjugates: Synthesis, characterization and biological activity. J Control Release115, 307–315 (2006).
  61. Zhang, Y.-Q., Tao, M.-L., Shen, W.-D., Mao, J.-P. & Chen, Y.-h. Synthesis of silk sericin peptides–l-asparaginase bioconjugates and their characterization. J Chem Technol Biotechnol81, 136–145 (2006).
  62. Baba, T., Hanada, K. & Hashimoto, I. The study of ultraviolet b-induced apoptosis in cultured mouse keratinocytes and in mouse skin. J Dermatol Sci12, 18–23 (1996).
  63. Kato, N. et al. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem62, 145–147 (1998).
  64. Sasaki, M., Kato, N., Watanabe, H. & Yamada, H. Silk protein, sericin, suppresses colon carcinogenesis induced by 1,2-dimethylhydrazine in mice. Oncol Rep7, 1049–1052 (2000).
  65. Takeuchi, A. et al. Heterogeneous nucleation of hydroxyapatite on protein: Structural effect of silk sericin. J R Soc Interface2, 373–378 (2005).
  66. Miyazaki, T. et al.Control of bioresorption of porous alpha-tricalcium phosphate by coating with silk sericin. Trans Mater Res Soc Jpn29, 4 (2004).
  67. Nayak, S., Talukdar, S. & Kundu, S. C. Potential of 2d crosslinked sericin membranes with improved biostability for skin tissue engineering. Cell Tissue Res347, 783–794 (2012).
  68. Lim, K. S. et al.The influence of silkworm species on cellular interactions with novel pva/silk sericin hydrogels. Macromol Biosci12, 322–332 (2012).
  69. Kundu, B. & Kundu, S. C. Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials33, 7456–7467 (2012).
  70. Cho, K. Y. et al.Preparation of self-assembled silk sericin nanoparticles. Int J Biol Macromol32, 36–42 (2003).
  71. Ahn, J. S., Choi, H. K., Lee, K. H., Nahm, J. H. & Cho, C. S. Novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of silk sericin. J Appl Polym Sci80, 274–280 (2001).
  72. Nagura, M., Ohnishi, R., Gitoh, Y. & Ohkoshi, Y. Structures and physical properties of cross-linked sericin membranes. J Insect Biotechnol Sericol70, 149–153 (2001).
  73. Pushpa, A., Vishnu, B. V. G. & K.S, T. R. Preparation of nano silk sericin based hydrogels from silk industry waste. J Environ Res Develop8, 243–253 (2013).
  74. Teramoto, H., Kameda, T. & Tamada, Y. Preparation of gel gilm from bombyx mori silk sericin and its characterization as a wound dressing. Biosci Biotechnol Biochem72, 3189–3196 (2008).
  75. Turbiani, F. R. B., Tomadon, J. J., Seixas, F. L. & Gimenes, M. L. Properties and structure of sericin films: Effect of the crosslinking degree. Chem Eng Trans24, 1489–1494 (2011).
  76. Nishida, A. et al. Sustained-release of protein from biodegradable sericin film, gel and sponge. Int J Pharm407, 44–52 (2011).
  77. Nayak, S., Dey, S. & Kundu, S. C. Skin equivalent tissue-engineered construct: Co-cultured fibroblasts/keratinocytes on 3d matrices of sericin hope cocoons. PLoS ONE8, e74779 (2013).
  78. Terada, S., Nishimura, T., Sasaki, M., Yamada, H. & Miki, M. Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology40, 3–12 (2002).
  79. Vitthalrao B. Khyade (2016).Efficiency of Silk sericin from the cocoons of silkworm, Antheraea mylitta (L) and Bombyx mori (L) for treating the Hydrogen Peroxide induced oxidative stress in feline fibroblasts. World Scientific News 44 (2016) 35-49.

Downloads

Published

2018-09-30

Issue

Section

Research Articles

How to Cite

[1]
Vitthalrao Bhimasha Khyade, Shinya Yamanaka, " Sericin from the cocoons of Silkworm, Antheraea Mylitta (L) and Bombyx Mori (L) for the Reduction in Hydrogen Peroxide Induced Oxidative Stress in Feline Fibroblasts, International Journal of Scientific Research in Chemistry(IJSRCH), ISSN : 2456-8457, Volume 3, Issue 4, pp.01-16, September-October-2018.