Mathematical Inverse Function (Equation) For Enzyme Kinetics

Authors

  • Seema Karna Dongare  Science Association, Shardabai Pawar Mahila Mahavidyalaya, Shardanagar, Baramati, Pune, Maharashtra, India
  • Manali Rameshrao Shinde  Science Association, Shardabai Pawar Mahila Mahavidyalaya, Shardanagar, Baramati, Pune, Maharashtra, India
  • Vitthalrao Bhimasha Khyade   Science Association, Shardabai Pawar Mahila Mahavidyalaya, Shardanagar, Baramati, Pune, Maharashtra, India

Keywords:

Baramati Constant,  mathematical approach

Abstract

The most significant application of Lineweaver–Burk plot lies in the determination of Michaelis constant (Km), substrate concentration [S] at which the velocity (v) of the enzyme catalyzed biochemical reaction attain half of it’s maximum (Vmax ÷ 2). For practical purposes, Km is the concentration of substrate which allows the enzyme velocity to achieve half of it’s maximum Vmax (Vmax ÷ 2). Most points on the plot are found far to the right of the y-axis. Through the reverse the mathematical steps and get inverse of substrate concentration (1÷S) back from some output value, say inverse of respective velocity (1÷v), one should undo each step in reverse order. It means that, one should subtract the inverse of maximum velocity (1÷Vmax) from inverse of respective velocity (1÷v) and then multiply the result by . This is going to yield the equation correspond to:  = . The 1÷S and 1÷v for given enzyme catalyzed biochemical reaction deserve symmetry, that is to say the symmetry between a Lineweaver Burk Plot (the real function) and the inverse function for enzyme kinetics of present attempt. The co-ordinates of the point of intersection of both the equations  = and  = correspond to: ( , ) . This type of attempt may establish the baseline for classification of enzymes through mathematical principles

References

  1. Lineweaver, H; Burk, D. (1934). "The determination of enzyme dissociation constants". Journal of the American Chemical Society. 56 (3): 658–666. doi:10.1021/ja01318a036.
  2. Hayakawa, K.; Guo, L.; Terentyeva, E.A.; Li, X.K.; Kimura, H.; Hirano, M.; Yoshikawa, K.; Nagamine, T.; et al. (2006). "Determination of specific activities and kinetic constants of biotinidase and lipoamidase in LEW rat and Lactobacillus casei (Shirota)". Journal of Chromatography B. 844 (2): 240–50. doi:10.1016/j.jchromb.2006.07.006. PMID 16876490.
  3. Greco, W.R.; Hakala, M.T. (1979). "Evaluation of methods for estimating the dissociation constant of tight binding enzyme inhibitors" (PDF). Journal of Biological Chemistry. 254 (23): 12104–12109. PMID 500698.
  4. Dowd, John E.; Riggs, Douglas S. (1965). "A comparison of estimates of Michaelis–Menten kinetic constants from various linear transformations" (pdf). Journal of Biological Chemistry. 240 (2): 863–869.
  5. Keith J. Laidler (1997). New Beer in an Old Bottle: Eduard Buchner and the Growth of Biochemical Knowledge, pp. 127–133, ed. A. Cornish-Bowden, Universitat de València, Valencia, Spain, 1997 http://bip.cnrs-mrs.fr/bip10/newbeer/laidler.pdf 
  6. Dick RM (2011). "Chapter 2. Pharmacodynamics: The Study of Drug Action". In Ouellette R, Joyce JA. Pharmacology for Nurse Anesthesiology. Jones & Bartlett Learning. ISBN 978-0-7637-8607-6.
  7. Berg, Jeremy M.; Tymoczko, John L.; Stryer, Lubert (2002). "The Michaelis-Menten Model Accounts for the Kinetic Properties of Many Enzymes". Biochemistry. 5th edition. W H Freeman.
  8. John E. Dowd and Douglas Briggs (1965). Estimates of Michaelis – Menten kinetic constants from various linear transformation. The Journal of Biological Chemistry Vol. 240 No. 2 February, 1965. http://www.jbc.org/content/240/2/863.full.pdf
  9. Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter II. The Acute Angle [14] Inverse trigonometric functions". Written at Ann Arbor, Michigan, USA. Trigonometry. Part I: Plane Trigonometry. New York, USA: Henry Holt and Company / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA. p. 15. Retrieved 2017-08-12. https://en.wikipedia.org/wiki/Inverse_function
  10. Scheinerman, Edward R. (2013). Mathematics: A Discrete Introduction. Brooks/Cole. p. 173. ISBN 978-0840049421.
  11. Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter II. The Acute Angle [14] Inverse trigonometric functions". Written at Ann Arbor, Michigan, USA. Trigonometry. Part I: Plane Trigonometry. New York, USA: Henry Holt and Company / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA. p. 15. • • Keisler, Howard Jerome. "Differentiation" (PDF). Retrieved 2015-01-24. §2.4
  12. Scheinerman, Edward R. (2013). Mathematics: A Discrete Introduction. Brooks/Cole. p. 173. ISBN 978-0840049421.
  13. Korn, Grandino Arthur; Korn, Theresa M. (2000) [1961]. "21.2.-4. Inverse Trigonometric Functions". Mathematical handbook for scientists and engineers: Definitions, theorems, and formulars for reference and review (3 ed.). Mineola, New York, USA: Dover Publications, Inc. p. 811;. ISBN 978-0-486-41147-7.
  14. Oldham, Keith B.; Myland, Jan C.; Spanier, Jerome (2009) [1987]. An Atlas of Functions: with Equator, the Atlas Function Calculator (2 ed.). Springer Science+Business Media, LLC. doi:10.1007/978-0-387-48807-3. ISBN 978-0-387-48806-6. LCCN 2008937525.
  15. Briggs, William; Cochran, Lyle (2011). Calculus / Early Transcendentals Single Variable. Addison-Wesley. ISBN 978-0-321-66414-3.
  16. Devlin, Keith J. (2004). Sets, Functions, and Logic / An Introduction to Abstract Mathematics (3rd ed.). Chapman & Hall / CRC Mathematics. ISBN 978-1-58488-449-1.
  17. Fletcher, Peter; Patty, C. Wayne (1988). Foundations of Higher Mathematics. PWS-Kent. ISBN 0-87150-164-3.
  18. Lay, Steven R. (2006). Analysis / With an Introduction to Proof (4 ed.). Pearson / Prentice Hall. ISBN 978-0-13-148101-5.
  19. Smith, Douglas; Eggen, Maurice; St. Andre, Richard (2006). A Transition to Advanced Mathematics (6 ed.). Thompson Brooks/Cole. ISBN 978-0-534-39900-9.
  20. Thomas, Jr., George Brinton (1972). Calculus and Analytic Geometry Part 1: Functions of One Variable and Analytic Geometry (Alternate ed.). Addison-Wesley.
  21. Wolf, Robert S. (1998). Proof, Logic, and Conjecture / The Mathematician's Toolbox. W. H. Freeman and Co. ISBN 978-0-7167-3050-7.
  22. Stryer L, Berg JM, Tymoczko JL (2002). Biochemistry (5th ed.). San Francisco: W.H.Freeman. ISBN 0-7167-4955-6.
  23. Schomburg I, Chang A, Placzek S, Söhngen C, Rother M, Lang M, Munaretto C, Ulas S, Stelzer M, Grote A, Scheer M, Schomburg D (January 2013). "BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA". Nucleic Acids Research. 41 (Database issue): D764–72. doi:10.1093/nar/gks1049. PMC 3531171. PMID 23203881
  24. Radzicka A, Wolfenden R (January 1995). "A proficient enzyme". Science. 267 (5194): 90–931. Bibcode:1995Sci...267...90R. doi:10.1126/science.7809611. PMID 7809611.
  25. Callahan BP, Miller BG (December 2007). "OMP decarboxylase—An enigma persists". Bioorganic Chemistry. 35 (6): 465–9. doi:10.1016/j.bioorg.2007.07.004. PMID 17889251.
  26. Michaelis L, Menten M (1913). "Die Kinetik der Invertinwirkung" [The Kinetics of Invertase Action]. Biochem. Z. (in German). 49: 333–369.; Michaelis L, Menten ML, Johnson KA, Goody RS (2011). "The original Michaelis constant: translation of the 1913 Michaelis-Menten paper". Biochemistry. 50 (39): 8264– 9. doi:10.1021/bi201284u. PMC 3381512. PMID 21888353.
  27. Briggs GE, Haldane JB (1925). "A Note on the Kinetics of Enzyme Action". The Biochemical Journal. 19 (2): 339–339. doi:10.1042/bj0190338. PMC 1259181. PMID 16743508.
  28. Ellis RJ (October 2001). "Macromolecular crowding: obvious but underappreciated". Trends in Biochemical Sciences. 26 (10): 597–604. doi:10.1016/S0968- 0004(01)01938-7. PMID 11590012.
  29. Kopelman R (September 1988). "Fractal reaction kinetics". Science. 241 (4873): 1620
  30. Bibcode:1988Sci...241.1620K. doi:10.1126/science.241.4873.1620. PMID 17820893.
  31. Segel, L.A.; Slemrod, M. (1989). "The quasi-steady-state assumption: A case study in perturbation". ThermochimActa31 (3): 446–477. doi:10.1137/1031091.
  32. Leskovac, V. (2003). Comprehensive enzyme kinetics. New York: Kluwer Academic/Plenum Pub. ISBN 978-0-306-46712-7.
  33. Greco, W.R.; Hakala, M.T. (1979). "Evaluation of methods for estimating the dissociation constant of tight binding enzyme inhibitors,".J BiolChem254 (23): 12104–12109. PMID 500698.
  34. Hayakawa, K.; Guo, L.; Terentyeva, E.A.; Li, X.K.; Kimura, H.; Hirano, M.; Yoshikawa,K.; Nagamine, T. et al. (2006). "Determination of specific activities and kinetic constants of biotinidase and lipoamidase in LEW rat and Lactobacillus casei (Shirota)". J Chromatogr B AnalytTechnol Biomed Life Sci844 (2): 240–50.doi:10.1016/j.jchromb.2006.07.006. PMID 16876490.
  35. Vitthalrao B. Khyade; Vivekanand V. Khyade and Sunanda V. Khyade (2017). The Baramati Quotient for the accuracy in calculation of Km value for Enzyme Kinetics. International Academic Journal of Innovative Research Vol. 4, No. 1, 2017, pp. 1-22.ISSN 2454-390X www.iaiest.com

Downloads

Published

2018-09-30

Issue

Section

Research Articles

How to Cite

[1]
Seema Karna Dongare, Manali Rameshrao Shinde, Vitthalrao Bhimasha Khyade , " Mathematical Inverse Function (Equation) For Enzyme Kinetics , International Journal of Scientific Research in Chemistry(IJSRCH), ISSN : 2456-8457, Volume 3, Issue 4, pp.35-42, September-October-2018.