Design of Bi-Metallic Precursors for Synthesis of Thin Inorganic Metal Oxide Films by Sol Gel Route

Authors

  • Raut Dessai Manjita Kanta  Assistant Professor, Parvatibai Chowgule College, Margao, Goa

Keywords:

Gallium, Indium, Alkoxides, Precursor, TFT, CVD, sol-Gel Route, Nano Particles.

Abstract

Recentlygallium and indium alkoxides are being used as precursors and their applications as gassensors, amorphous oxide semiconductors within thin film transistor (TFT) technology, as photoelectric coatings and as transparent conducting coatings. Thsesealkoxides also act as excellent precursors to their oxides viadecomposition processes, at relatively low temperature, using chemicalvapourdeposition (CVD) to form thin films. At the same timethe synthesis and characterization of nanoparticles display many unique properties like electrical, optical, and magnetic, somewhat different to the bulk system and interesting applications in biology, catalysis, sensors, mechanics and electronics fields. The mixed-oxides were obtained and characterized by a high dispersion of the active phase in the matrix on both molecular and nanometer scale. The versatility of the sol-gel route makes possible to obtain the final material as powders, bulk and coating films. The different metal oxide films were grown using a variety of precursors. The films deposited were not oxygen deficient and little carboncontamination was observed. Thin films of indium gallium oxide, and zinc gallium oxide were alsoproduced.

References

  1. A Rudiger, T. Schneller, A. Roelofs, S. Tiedke, T. Schmitz, R. Waser, Appl. Phys. 2005, 80, 1247.
  2. C Noguez, Opt. Mater. 2005, 27, 1204.
  3. M Dofrenik, D. Lisjak, D. Makovec, Mater. Sci. Forum 2005, 494, 129.
  4. JD. Lockwood, Nanostructure Science and Technology, Surface Effects in Magnetic Nanoparticles; Springer: New York, 2005.
  5. LQ. Nguyen, C. Salim, H. Hinode, Appl. Cat. A: Gen. 2008, 347, 94.
  6. R Thakar,Y.Chen,P.T. Snee, Nano Lett.2007, 7, 3429.
  7. B Mukherjee, S.K. Batabyal, A.J. Pal, Adv. Mater. 2007, 19, 717.
  8. CJ. Brinker, S.W. Scherer, Sol–Gel science: the physics and chemistry of sol–gel processing. Academic Press, New York, 1990.
  9. LL. Hench, J.K. West, Chem. Rev. 1990, 90, 33.
  10. A Fidalgo, M.E. Rosa, L.M. Ilharco, Chem. Mater. 2003, 15, 2186.
  11. KO. Drake, D. Carta, L.J. Skipper, F.E. Sowrey, R.J. Newport, M.E. Smith, Solid State NMR 2005, 27, 28.
  12. B Julia´n, C. Gervais, E. Cordoncillo, P. Escribano, F. Babonneau, C. Sanchez, Chem. Mater. 2003, 15, 3026.
  13. MS.P. Francisco, Y. Gushikem, J. Mater. Chem. 2002, 12, 2552.
  14. MS.P. Francisco, R. Landers, Y. Gushikem 2004, J. Solid. State Chem. 177,2432.
  15. SS. Rosatto, P.T. Sotomayor, L.T. Kubota, Y. Gushikem, Electrochim. Acta 2002, 47, 4451.
  16. A Aronne, M. Turco, G. Bagnasco, P. Pernice, M. Di Serio, N.J. Clayden, E. Marenna, E. Fanelli, Chem. Mater. 2005, 17, 2081.
  17. C J. Brinker, A. J. Hurd et al., Sol-Gel Thin Film Formation?, Chem. Proc., Adva. Mater., 1992.
  18. CJ. Brinker, B.C. Bunker et al., Structure of Sol-Gel Derived InorganicPolymers: Silicates and Borates, Am. Chem. Soc., part II 1988.
  19. RW. Jones, Fundamental Principles of Sol-Gel Technology 1989.
  20. CB. Hurd, Chem. Rev. 1938, 22, 403.
  21. K J. Klabunde, J. V. Stark, O. Koper, C. Mohs, D. G. Park, S. Decker, Y. Jiang, I. Lagadic and D. Zhang, J. Phys. Chem., 1996, 100, 12 142–12 153.
  22. J V. Stark, D. G. Park, I. Lagadic and K. J. Klabunde, Chem. Mater., 1996, 8, 1904– 1912.
  23. O Koper, I. Lagadic and K. J. Klabunde, Chem. Mater., 1997, 9, 838–848.
  24. K J. Klabunde, US Pat., 5 990 373, 1999.
  25. O Koper and K. J. Klabunde, US Pat., 6 057 488, 2000.
  26. Y Jiang, S. Decker, C. Mohs and K. J. Klabunde, J. Catal., 1998, 180, 24–35.
  27. L E. Manzer and K. Kourtakis, WO Pat. Appl., 99-US18962, 19990819, 1999.
  28. M Osgan and P. Teyssie, J. Polym. Sci., Polym. Lett. Ed., 1967, 5, 789–792.
  29. M R. Alverez Lopez, M. J. Torralvo Fernandez, C.MasCarbonell and C. Otero Arean, J. Mater. Sci. Lett., 1993, 12, 1619–1621.
  30. E Platero, A. Escalona and J. B. Parra, Res. Chem. Intermed., 1999, 25, 187.
  31. S Komarmeni, R. Roy and Q. H. Li, Mater. Res. Bull., 1992, 27, 1393.
  32. A Mosset, P. Baules, P. Lecante, J. C. Trombe, H. Ahamdane and F. Bensamka, J. Mater. Chem., 1996, 6, 1527.
  33. R Valero, B. Durand, J. L. Guth and T. Chopin, J. Sol±Gel Sci. Technol., 1998, 13, 119.
  34. M Nogami, J. Non-Cryst. Solids, 1985, 69, 415.
  35. N Nogami and M. Tomozawa, J. Am. Ceram. Soc., 1986, 69, 9.
  36. Y Kanno and T. Suzuki, J. Mater. Sci. Lett., 1988, 7, 386.
  37. Y Kanno, J. Mater. Sci., 1989, 24, 2415.
  38. J Campaniello, E. M. Rabinovich, P. Berthet, A. Revcolevschi and N. A. Kopylov, Mater. Res. Soc. Symp. Proc., 1990, 180, 541.
  39. S S. Jada, J. Mater. Sci. Lett., 1990, 9, 565.
  40. M Salvado and F. Navarro, J. Mater. Sci. Lett., 1990, 9, 173.
  41. H Kobayashi, T. Terasaki, H. Yamamura and T. Mitamura, SeramikkusuRonbunshi, 1991, 99, 42.
  42. T Mori, H. Yamamura, H. Kobayashi and T. Mitamura, J. Am. Ceram. Soc., 1992, 75, 2420.
  43. T Itoh, J. Cryst. Growth, 1992, 125, 223.
  44. S K. Saka and P. Pramanik, J. Non-Cryst. Solids, 1993, 159, 31.
  45. T Mori, H. Yamamura, H. Kobayashi and T. Mitamura, J. Mater. Sci., 1993, 28, 4970.
  46. T Itoh, J. Mater. Sci. Lett., 1994, 13, 1661.
  47. Y Shi, X. X. Huang and D. S. Yan, J. Eur. Ceram. Soc., 1994, 13, 113.
  48. P Tartaj, J. Sanz, J. Serna and M. Ocana, J. Mater. Sci., 1994, 29, 6533.
  49. A Hagfeldt and M. Gra¨ tzel, Chem. Rev., 1995, 95, 49–68.
  50. A L. Linsebigler, G.-Q. Lu and J. J. T. Yates, Chem. Rev., 1995, 95, 735–758.
  51. A Mills and S. Le Hunte, J. Photochem. Photobiol., A, 1997, 108, 1–35.
  52. K Kalyanasundaram and M. Gra¨ tzel, Coord. Chem. Rev., 1998, 177, 347–414.
  53. C Bechinger, S. Ferrere, A. Zaban, J. Sprague and B. A. Gregg, Nature, 1996, 383, 608–610.
  54. W Zhou, C. W. Sun and Z. Z. Yang, J. Inorg. Mater., 1998, 13, 275–281.
  55. C J. Barbe´, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Gra¨ tzel, J. Am. Ceram. Soc., 1997, 80, 3157–3171.
  56. C Natarajan and G. Nogami, J. Electrochem. Soc., 1996, 143, 1547–1550.
  57. Z Miao, D. S. Xu, J. H. Ouyang, G. L. Guo, X. S. Zhao and Y. Tang, Nano Lett., 2002, 2, 717–720.
  58. B B. Lakshmi, C. J. Patrissi and C. R. Martin, Chem. Mater., 1997, 9, 2544–2550.
  59. M-D. Wei, Y. Konishi, H. Zhou, H. Sugihara and H. Arakawa, J. Electrochem. Soc., 2006, 153, A1232–A1236.
  60. E L. Crepaldi, G. J. d. A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot and C. Sanchez, J. Am. Chem. Soc., 2003, 125, 9770–9786.
  61. B O’Regan and M. Gra¨ tzel, Nature, 1991, 353, 737–740
  62. M Gra tzel, J. Photochem. Photobiol., A, 2004, 164, 3–14.
  63. K D. Benkstein, N. Kopidakis, J. van de Lagemaat and A. J. Frank, J. Phys. Chem. B, 2003, 107, 7759–7767.
  64. N-G. Park, J. van de Lagemaat and A. J. Frank, J. Phys. Chem. B, 2000, 104,
  65. (a) M. Veith, J. Chem. Soc., Dalton Trans, 2002, 2405; (b) M. Marciniec and H. Maciejewski, Coord. Chem. Rev., 2001, 223, 301; (c) J. S. Matthews, O. Just, B. Obi-Johnson and W. S. Rees, Jr., Chem. Vap. Deposit., 2000, 6, 129; (d ) J. W. Kriesel and T. D. Tilley, J. Mater. Chem., 2001, 11, 1081; (e) K. L. Fujdala and T. D. Tilley, Chem. Mater., 2001, 13, 1817.
  66. Review: N. Y. Turova, E. P. Turevskaya, V. G. Kessler and M. I. Yanovskaya, The Chemistry of Metal Alkoxides, Kluwer Academic Publishers, Dordrecht, 2002, ch. 12, p. 217.
  67. (a) F. Schindler, H. Schmidbaur and U. Krüger, Angew. Chem., 1965, 77, 865; (b) F. Schindler and H. Schmidbaur, Angew. Chem., 1967, 79, 697; (c) M. Driess, K. Merz and S. Rell, Eur. J. Inorg. Chem., 2000, 2517; (d ) K. Merz, H.-M. Hu, S. Rell and M. Driess, Eur. J. Inorg. Chem., 2003, 51.
  68. (a) K. Merz, R. Schoenen and M. Driess, J. Phys. IV, 2001, 11, 467; (b) M. Driess, K. Merz, R. Schoenen, R. Rabe, F. E. Kruis, A. Roy and A. Birkner, C. R. Chimie, 2003, in the press; (c) J. Hambrock, S. Rabe, K. Merz, A. Wohlfarth, A. Birkner, R. A. Fischer and M. Driess, J. Mater. Chem., 2003, 13, 1731
  69. (a) J. B. Hansen, in Handbook of Heterogeneous Catalysis, ed. G. Ertl, H. Knözinger and J. Weitkamp, Wiley-VCH, Weinheim 1997, p. 1856; (b) B. A. Peppley, J. C. Amphlett, L. M. Kearns and R. F. Mann, Appl. Catal. A, 1999, 179, 21; (c) H. Wilmer, M. Kurtz, K. V. Klementiev, O. P. Tkachenko, W. Grünert, O. Hinrichsen, A. Birkner, S. Rabe, K. Merz, M. Driess, C. Wöll and M. Muhler, Phys.Chem. Chem. Phys., 2003, 5.
  70. P Winiarek and J. Kijenski, J. Chem. Soc., Faraday Trans., 1998, 94, 167
  71. (a) C. A. Musser and H. G. Richey, Jr., J. Org. Chem., 2000, 65, 7750 and references therein; (b) D. J. Ager, I. Fleming and S. K. Patel, J. Chem. Soc., Perkin Trans. 1, 1981, 2520.
  72. M W. Rathke and H. Yu, J. Org. Chem., 1972, 37, 1732. 8989–8994.

Downloads

Published

2016-09-30

Issue

Section

Research Articles

How to Cite

[1]
Raut Dessai Manjita Kanta, " Design of Bi-Metallic Precursors for Synthesis of Thin Inorganic Metal Oxide Films by Sol Gel Route, International Journal of Scientific Research in Chemistry(IJSRCH), ISSN : 2456-8457, Volume 1, Issue 1, pp.12-17, September-October-2016.