In vitro Studies on the Inhibition of α-amylase and α-glucosidase by Methanolic Extract of Barleria Prionitis L. and Psidium guajava

Akshay R. Yadav*, Dr. Shrinivas K. Mohite

Department of Pharmaceutical Chemistry, Rajarambapu College of Pharmacy, Kasegaon, Dist- Sangli, Maharashtra, India-415404

*Corresponding author E-mail: akshayyadav24197@gmail.com

ABSTRACT

The management of the blood glucose level is a critical strategy in the control of diabetes complications. There are many and diverse therapeutic strategies in the management of Type II diabetes. The inhibition of carbohydrate hydrolyzing enzymes such as α-amylase can be an important strategy to lower postprandial blood glucose levels. Such inhibitors which find application in the clinical practice for management of diabetes are known to be associated with various gastrointestinal side effects. Therefore, it is the need of time to identify and explore the amylase inhibitors from natural sources having fewer side effects. In the present study, 50% volume per volume methanolic extracts of Barleria Prionitis and psidium guajava subjected to in vitro analysis of antidiabetic effect by alpha-amylase and alpha-glucosidase inhibitory assay. Inhibitory activity of the methanolic extract of the plant individually against alpha-amylase enzyme and alpha-glucosidase enzyme were examined in different concentrations (3.90–500 μg/mL), where acarbose used as a positive control. The percentage inhibition of Barleria Prionitis showed the highest alpha-amylase and alpha-glucosidase inhibitory activity. Half-maximal inhibitory concentration value Barleria Prionitis was found for alpha-amylase and alpha-glucosidase inhibition. This study suggests that the methanolic extract of all two plants have antidiabetic property, among these three plants Barleria Prionitis showed potent enzyme inhibition as compared to other plant extracts and standard acarbose.

Keywords: Barleria Prionitis, Psidium guajava, Alpha-amylase, Alpha-glucosidase, Antidiabetic.

I. INTRODUCTION

Diabetes mellitus is a chronic multifactorial disorder and one of the non-communicable life-threatening metabolic diseases involving huge health-care cost and high mortality rate1. In 2015, it was found that it affecting 422 million adults globally. The majority of them were between 40 and 59 years and around 80% lived in middle- and low-income countries2. It was found that more than 4.9 million deaths were caused alone with diabetes and the number of diabetes patients will increase up to 55% by 2035, reaching 592 million aging between 20 and 79 years. These are non-infectious and non-transmissible. It is characterized by chronic hyperglycemia with disturbance of carbohydrate, fat, and protein metabolism due to the insufficient secretion of insulin by the pancreas and by the resistance to the action on insulin in various issues, i.e., muscle, liver, and adipose, which results in impaired uptake of glucose3-4. Postprandial hyperglycemia is one of the earliest observable abnormalities of glucose homeostasis, in
which blood glucose level remains high after consuming meal and plays an important role in the development of type 2 diabetes and associated chronic complications, such as micro- and macro-vascular disorder. Management of plasma glucose levels is essential for delaying or preventing type-2 diabetes\(^6\). Insulin secretion through medication and/or dietary supervision, it is possible to reach this goal. Decreasing the postprandial glucose level is one of the therapeutic approaches for treating type-2 diabetes; for example slowing the glucose absorption through inhibition of the carbohydrates-hydrolyzing enzymes present in the small intestinal brush border, α-glucosidase, and α-amylase. These are responsible for the breakdown of oligosaccharides and disaccharides into monosaccharides\(^6\). Fruits and vegetables that are consumed worldwide have excellent sources of bioactive compounds and having capacity reducing the risk of developing diabetes. Postprandial glucose levels can be regulated through α-glucosidase inhibition. Inhibition of these enzymes delay and in some cases halt carbohydrate digestion, thus prolonging overall carbohydrate digestion time, causing a reduction in the rate of glucose absorption and consequently reducing postprandial plasma glucose rise Nowadays, α-glucosidase inhibitors such as acarbose, miglitol, and voglibose are oral blood glucose-lowering drugs commonly used. They decrease postprandial hyperglycemia without inducing insulin secretion; these compounds do not induce hypoglycemia and have good safety; although, the gastrointestinal adverse effect may limit long-term compliance to therapy. Several medicinal plants species have been used to control diabetes in the traditional medicinal systems of many cultures worldwide. The potential role of medicinal plants as inhibitors of α-amylase and α-glucosidase has been reviewed by several authors. A variety of plants has been reported to show an enzymatic inhibitory activity, and so many are relevant to the treatment of type-2 diabetes. The research for a new group of agents from natural resources, especially from traditional medicine becomes an attractive approach for the treatment of postprandial hyperglycemia. It is revealed that there is a direct relationship between phenolic compounds, flavonoids, and tannins and the ability to inhibit α-amylase and α-glucosidase activities. These phenolic compounds have a positive effect on diabetes, by inhibiting the two keys enzymes hydrolyzing carbohydrates in the digestive tract\(^8\)–\(^9\). The Soxhlet extraction, which is a standard technique, is a continuous solvent extraction method. Extraction systems are used to conduct routine solvent extractions of soils, sediments, sludge, polymers and plastics, pulp and paper, biological tissues, textiles and food samples\(^10\)–\(^25\). Experiments have proved that microwaves, in comparison with the soxhlet extraction, use a lesser volume of solvent and sample and perform extraction at a much faster rate\(^26\)–\(^53\). In the discovery of effective medicines for prevention and treatment, an outbreak of coronavirus disease (COVID-19) caused by the novel extreme acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses an unprecedented obstacle. The proximity to the patient during dental care, high generation of aerosols, and the identification of SARS-CoV-2 in saliva have suggested the oral cavity as a potential reservoir for COVID-19 transmission. Soon, someday, you might be making your own drugs at home. That is because researchers have adapted a 3D printer from basic, readily available medicinal active agents fed into a drug delivery system\(^34\)–\(^74\).

II. MATERIALS AND METHODS

Chemicals and Reagents

Porcine pancreatic α-amylase (PPA), 3,5-dinitrosalicylic acid (DNS color reagent), Potassium phosphate buffer solution (PBS), p-Nitrophenyl-α-D-glucopyranoside (pNPG), α-glucosidase, and ascorbose were purchased from Sigma Aldrich. Soluble starch potato, sodium potassium tartrate, sodium chloride, disodium hydrogen phosphate, and sodium hydroxide were from Merck Chemical
Supplies (India). All the chemicals, including the solvents used in this study, were of analytical grade.

Plant Materials
The fresh matured leaves of the *B. prionitis* and *Psidium guajava* were collected randomly, from Sangli region, Maharashtra, India. Department of Botony, Yashwantrao Chavan College of Science, Karad has identified the plant and authenticated it.

Preparation of Plant Extract
Shade drying was done for almost a month to prevent sunlight chemical degradation. The dried material was grinded and transformed in coarse powder with the aid of a grinder. The extraction of *B. prionitis* and *Psidium guajava* with solvent methanol was carried out by microwave extraction, and excess solvent present was evaporated.

In vitro methods employed in antidiabetic studies

α-amylase inhibition activity
PPA (enzyme commission 3.2.1.1) solution was dissolved in 20 mM phosphate buffer (pH 6.9 with 6.7 mM sodium chloride) to give a concentration of 1 U/ml. Starch solution (1%, w/v) was obtained by stirring 0.1 g of potato starch in 100 ml of 20 mM of phosphate buffer (pH 6.9 with 6.7 mM sodium chloride) as a substrate. A total of 100 μl of plant extract solution and 100 μL of the enzyme were preincubated at 37°C for 30 min. After preincubation 100 μl of a 1% starch solution was added. The reaction mixtures were then incubated at 37°C for 20 min. The reaction was stopped with 200 μL of DNS color reagent and placed in boiling water for 5 min and cooled to room temperature. Add 200 μl of reaction mixture into the 96-well microplate after diluted with 1.5 ml of distilled water. The α-amylase activity was determined by measuring the absorbance of the mixture at 540 nm. Acarbose was used as positive control. Percentage inhibition was calculated by comparing against control optical density with the test group.

\[
I\% = \frac{(A_c - A_s)}{A_c} \times 100
\]

Where,
A_c is the absorbance of the control and
A_s is the absorbance of the sample.

α-glucosidase inhibitory activity
The α-glucosidase inhibitory activity was performed with a set of microwell. The enzyme solution containing 20 μl α-glucosidase (0.1 unit/ml) enzyme solutions were added in 96 microwell plate except blank well. A volume of 120 μl 0.1 M PBS solutions were added into the well–containing enzyme and 140 μl 0.1 M PBS in blank well and 160 μl PBS in extract blank well. Ten microliters of test samples (Acarbose or test samples) were added into the enzyme solution in microplate wells and then incubated for 15 min at 37°C. Twenty microliters of pNPG solutions were added to the microwell plate and incubated the plate for 15 min at 37°C. The reaction was terminated by adding 80 μl of 0.2 M sodium carbonate solution.

- Test solution contains: 20 μl enzyme + 120 μl PBS + 10 μl of test samples + 20 μl pNPG + 80 μl stop reagent.
- Control solution: All reaction mixture without test samples (20 μl enzyme + 130 μl PBS + 20 μl pNPG + 80 μl stop reagent).
- Blank solution: All reaction mixture except α-glucosidase enzyme (140 μl PBS + 10 μl of test samples + 20 μl pNPG + 80 μl stop reagent)
- Extract blank solution: 10 μl extract + 160 μl PBS + 80 μl stop reagent.

The absorbance of the wells was measured with a microplate reader. at 405 nm, while the reaction system without plant extracts was used as control. The system without α-glucosidase was used as blank, and acarbose was used as positive control. Each experiment was conducted in triplicate. The percentage enzyme inhibition and half-maximal inhibitory concentration (IC50) was calculated.

Calculation of half-maximal inhibitory concentration
The concentration of plant extracts required to scavenge 50% of the radicals (IC50) was calculated by using the percentage scavenging activities at five different concentrations of the extracts. Percentage inhibition (I%) was calculated by:

\[
I\% = \frac{(A_c - A_s)}{A_c} \times 100
\]

Where,
A_c is the absorbance of the control and
A_s is the absorbance of the sample.
III. RESULTS AND DISCUSSION

Antidiabetic plants have a major role in inhibiting the glucose level thus providing protection to human against hyperglycemia. Realizing the facts his research was carried out to evaluate the antidiabetic activity of methanolic extract of the selected plants. The in vitro antidiabetic activity of these plants extract was detected by measurement of glucose uptake in L6 cell lines.

α-Amylase inhibition activity

In this study, the in vitro α-amylase inhibitory activities of the hydro-ethanolic extract of the B. prionitis and Psidium guajava was investigated. The results of the experiment showed that there was a dose-dependent increase in percentage inhibitory activity against α-amylase enzyme [Table 1]. The IC₅₀ values were determined using potato starch (1%, w/v) in 20 mM phosphate buffer (pH 6.9 containing 6.7 mM sodium chloride) is used as substrate (in vitro) and tested sample concentration ranged from 3.90 to 500 μg/ml. B. prionitis extract showed highest α-amylase inhibitory activity as compared to the standard drug (acarbose).

Table 1: α-Amylase inhibition data at different concentration of test samples

<table>
<thead>
<tr>
<th>Concentration (μg/ml)</th>
<th>Percentage of inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barleria Prionitis</td>
</tr>
<tr>
<td>3.90</td>
<td>42.28</td>
</tr>
<tr>
<td>7.81</td>
<td>51.36</td>
</tr>
<tr>
<td>15.63</td>
<td>60.12</td>
</tr>
<tr>
<td>31.25</td>
<td>67.39</td>
</tr>
<tr>
<td>62.50</td>
<td>75.10</td>
</tr>
<tr>
<td>125.00</td>
<td>82.91</td>
</tr>
<tr>
<td>250.00</td>
<td>94.82</td>
</tr>
<tr>
<td>500.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

α-glucosidase inhibition activity

In this study, the in vitro α-glucosidase inhibitory activities of the hydro-alcoholic extract of the B. prionitis and Psidium guajava was investigated. The results of experiment showed that there was a dose-dependent increase in percentage inhibitory activity against α-glucosidase enzyme [Table 2]. methanolic extracts of the B. prionitis and Psidium guajava showed α-glucosidase inhibitory potential. The half-maximal inhibitory concentration values were determined using paranitrophenyl-α-D-glucopyranoside as substrate (in vitro) and tested sample concentration ranged from 9.30 to 500 μg/ml. B. prionitis extract showed highest α-glucosidase inhibitory activity as compared to standard drug (acarbose). Inhibition of α-amylase and α-glucosidase enzymes involved in the digestion of carbohydrates, which can significantly decrease the postprandial increase of blood glucose after a mixed carbohydrate diet and therefore can be play an important role in the management of postprandial blood glucose level in type 2 diabetic patients and borderline patients. According to numerous in vitro studies, inhibition of α-amylase and α-glucosidase is believed to be one of the most effective approaches for diabetes care.

Table 2: α-Glucosidase inhibition data at different concentration of test samples

<table>
<thead>
<tr>
<th>Concentration (μg/ml)</th>
<th>Percentage of inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barleria Prionitis</td>
</tr>
<tr>
<td>3.90</td>
<td>35.67</td>
</tr>
<tr>
<td>7.81</td>
<td>40.38</td>
</tr>
<tr>
<td>15.63</td>
<td>48.21</td>
</tr>
<tr>
<td>31.25</td>
<td>54.91</td>
</tr>
<tr>
<td>62.50</td>
<td>60.18</td>
</tr>
<tr>
<td>125.00</td>
<td>74.89</td>
</tr>
<tr>
<td>250.00</td>
<td>88.34</td>
</tr>
<tr>
<td>500.00</td>
<td>94.12</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

Conventionally, many herbal formulations are using as single herb or in combinations of several different herbs. It believed that poly herbs show synergistic
effect. The herbal formulation includes either plant raw material or plant extracts. Here, all selected plants are collected from the Chambal Valley of India to investigate the antidiabetic properties. This study provides the evidence that 50% v/v methanolic extracts of all two plants B. prionitis and Psidium guajava are having potent enzyme inhibitory actions which are responsible for hyperglycemia. However, more efforts are needed for the isolation and characterization of bioactive compounds and further evaluation of biological properties.

V. REFERENCES

[19]. Yadav A, Mohite S. In-Silico ADME Analysis of 1, 3, 4-oxadiazole derivatives as CDK9 Inhibitors. International Journal of Chemical Science. 2020; 4(3): 01-04

[57]. Rajput M, Yadav A. Green Chemistry Approach for Synthesis of Some 1,3,4-Oxadiazole Derivatives As Potent Antimalarial Agents Journal of University of Shanghai for Science and Technology. 2020; 22(11): 1854-1869.

[75]. achan AK, Rao CV, Sachan NK. Extraction and evaluation of hypoglycemic and wound healing

Cite this article as: Akshay R. Yadav, Dr. Shrinivas K. Mohite, "In vitro Studies on the Inhibition of ?-amylase and ?-glucosidase by Methanolic Extract of Barleria Prionitis L. and Psidium guajava ", International Journal of Scientific Research in Chemistry (IJSRCH), ISSN : 2456-8457, Volume 5 Issue 1, pp. 50-58, January-February 2020.

URL : http://ijsrch.com/IJSRCH120529