The Indian Square for Enzyme Kinetics Through the Regular Form of Lineweaver-Burk Plot (Double Reciprocal Plot); It's Inverse Form and Other Additional Form of Plots (Equations)

Authors

  • Vitthalrao Bhimasha Khyade  Science Association, Shardabai Pawar Mahila Mahavidyalaya, Shardanagar Tal. Baramati Dist. Pune, Maharashtra, India
  • Seema Karna Dongare  Science Association, Shardabai Pawar Mahila Mahavidyalaya, Shardanagar Tal. Baramati Dist. Pune, Maharashtra, India
  • Manali Rameshrao Shinde  Science Association, Shardabai Pawar Mahila Mahavidyalaya, Shardanagar Tal. Baramati Dist. Pune, Maharashtra, India

Keywords:

Indian Square, Enzyme Kinetics, Mathematical Approach

Abstract

Each enzyme deserves a specific Michaelis-Menten constant (Km), which is determined through the double reciprocal plot, also recognized as Lineweaver-Burk plot. This constant of Michaelis-Menten (Km) is concentration of substrate [S] and it avails the velocity (v) of reaction to proceed up to half of it’s maximal or Vmax. The regular Lineweaver-Burk plot and it’s inverse form are designated as y1 and y2 lines respectively. Present attempt is considering additional plots or the lines keeping the concept in regular Lineweaver-Burk plot constant. These plots include: y3 and y4. In slope and intercept form the lines y3 and y4 expressed as: y3= -[(Km÷Vmax)(X)] + [(km+1)÷(Vmax)] and y4= -[(Vmax÷Km)(X)] + [(Vmax -1)÷(Km)]. In addition; y5 = X + 0 and y6 = - X + 1 are the two reference lines are also considered in this attempt. The line y3 intersect the reference line y5 at the point “A”, the x- co-ordinate and y- co-ordinate of which are equal to each other and correspond to: [(Km+1)÷(Vmax+Km)]. The line y1 intersect the reference line y6 at the point “B”, the x- co-ordinate and y- co-ordinate of which respectively correspond to: [(Vmax – 1) ÷ (Vmax + Km)] and [(Km + 1) ÷ (Vmax + Km)]. The point at which the reference line y5 attains [(Vmax – 1) ÷ (Vmax + Km)] is labeled as the point “C”. The X – co-ordinate and Y – co-ordinate of the point “C” corresponds to: [(Vmax – 1) ÷ (Vmax + Km)] [(Km + 1) ÷ (Vmax + Km)] respectively. The point of intersection of the line y2 and the reference line y6 is labeled as the point “D”. The X – co-ordinate and Y – co-ordinate of the point “D” corresponds to: [(Km + 1) ÷ (Vmax + Km)] and [(Vmax – 1) ÷ (Vmax + Km)] respectively. The length of segment AB=BC=CD=DA and it correspond to: [(Vmax - Km - 2) ÷ (Vmax + Km)]. The point “A”; “B”; “C” and “D” constitute the vertices of square ABCD. The resulting mathematical square, herewith labeled as: “Indian Square For Enzyme Kinetics”. Each of the four vertices (corners) have known coordinates in terms of Vmax and Km, the key indices in enzyme kinetics.

References

  1. W., Weisstein, Eric. "Square". mathworld. http://mathworld.wolfram.com/Square.html Weisstein, Eric W. "Square." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Square.html
  2. Zalman Usiskin and Jennifer Griffin, "The Classification of Quadrilaterals. A Study of Definition", Information Age Publishing, 2008, p. 59, ISBN 1-59311-695-0.
  3. "Problem Set 1.3". jwilson.coe.uga.edu. Retrieved 2017-12-12.
  4. Josefsson, Martin, "Properties of equidiagonal quadrilaterals" Forum Geometricorum, 14 (2014), 129-144.
  5. "Maths is Fun - Can't Find It (404)". www.mathsisfun.com. Retrieved 2017-12-12.
  6. Chakerian, G.D. "A Distorted View of Geometry." Ch. 7 in Mathematical Plums (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979: 147.
  7. 1999, Martin Lundsgaard Hansen, thats IT (c). "Vagn Lundsgaard Hansen". www2.mat.dtu.dk. Retrieved 2017-12-12.
  8. "Geometry classes, Problem 331. Square, Point on the Inscribed Circle, Tangency Points. Math teacher Master Degree. College, SAT Prep. Elearning, Online math tutor, LMS". gogeometry.com. Retrieved 2017-12-12.
  9. Park, Poo-Sung. "Regular polytope distances", Forum Geometricorum 16, 2016, 227-232. http://forumgeom.fau.edu/FG2016volume16/FG201627.pdf
  10. John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon pp. 275-278).
  11. Wells, Christopher J. "Quadrilaterals". www.technologyuk.net. Retrieved 2017-12-12. Clark, W. E. and Suen, S. "An Inequality Related to Vizing's Conjecture." Electronic J. Combinatorics 7, No. 1, N4, 1-3, 2000. http://www.combinatorics.org/Volume_7/Abstracts/v7i1n4.html.
  12. Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. Washington, DC: Math. Assoc. Amer., p. 84, 1967.
  13. Detemple, D. and Harold, S. "A Round-Up of Square Problems." Math. Mag. 69, 15-27, 1996.
  14. Dixon, R. Mathographics. New York: Dover, p. 16, 1991.
  15. Eppstein, D. "Rectilinear Geometry." http://www.ics.uci.edu/~eppstein/junkyard/rect.html.
  16. Fischer, G. (Ed.). Plate 1 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig, Germany: Vieweg, p. 2, 1986.
  17. Fukagawa, H. and Pedoe, D. "One or Two Circles and Squares," "Three Circles and Squares," and "Many Circles and Squares (Casey's Theorem)." §3.1-3.3 in Japanese Temple Geometry Problems. Winnipeg, Manitoba, Canada: Charles Babbage Research Foundation, pp. 37-42 and 117-125, 1989.
  18. Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, pp. 165 and 167, 1984.
  19. Guy, R. K. "Rational Distances from the Corners of a Square." §D19 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 181-185, 1994.
  20. Harris, J. W. and Stocker, H. "Square." §3.6.6 in Handbook of Mathematics and Computational Science. New York: Springer-Verlag, pp. 84-85, 1998.
  21. Kern, W. F. and Bland, J. R. Solid Mensuration with Proofs, 2nd ed. New York: Wiley, p. 2, 1948.
  22. Yaglom, I. M. Geometric Transformations I. New York: Random House, pp. 96-97, 1962.
  23. Lineweaver, H; Burk, D. (1934). "The determination of enzyme dissociation constants". Journal of the American Chemical Society. 56 (3): 658–666. doi:10.1021/ja01318a036.
  24. Hayakawa, K.; Guo, L.; Terentyeva, E.A.; Li, X.K.; Kimura, H.; Hirano, M.; Yoshikawa, K.; Nagamine, T.; et al. (2006). "Determination of specific activities and kinetic constants of biotinidase and lipoamidase in LEW rat and Lactobacillus casei (Shirota)". Journal of Chromatography B. 844 (2): 240–50. doi:10.1016/j.jchromb.2006.07.006. PMID 16876490.
  25. Greco, W.R.; Hakala, M.T. (1979). "Evaluation of methods for estimating the dissociation constant of tight binding enzyme inhibitors" (PDF). Journal of Biological Chemistry. 254 (23): 12104–12109. PMID 500698.
  26. Dowd, John E.; Riggs, Douglas S. (1965). "A comparison of estimates of Michaelis–Menten kinetic constants from various linear transformations" (pdf). Journal of Biological Chemistry. 240 (2): 863–869.
  27. Keith J. Laidler (1997). New Beer in an Old Bottle: Eduard Buchner and the Growth of Biochemical Knowledge, pp. 127–133, ed. A. Cornish-Bowden, Universitat de València, Valencia, Spain, 1997 http://bip.cnrs-mrs.fr/bip10/newbeer/laidler.pdf
  28. Dick RM (2011). "Chapter 2. Pharmacodynamics: The Study of Drug Action". In Ouellette R, Joyce JA. Pharmacology for Nurse Anesthesiology. Jones & Bartlett Learning. ISBN 978-0-7637-8607-6
  29. Berg, Jeremy M.; Tymoczko, John L.; Stryer, Lubert (2002). "The Michaelis-Menten Model Accounts for the Kinetic Properties of Many Enzymes". Biochemistry. 5th edition. W H Freeman.
  30. John E. Dowd and Douglas Briggs (1965). Estimates of Michaelis – Menten kinetic constants from various linear transformation. The Journal of Biological Chemistry Vol. 240 No. 2 February, 1965. http://www.jbc.org/content/240/2/863.full.pdf
  31. Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter II. The Acute Angle [14] Inverse trigonometric functions". Written at Ann Arbor, Michigan, USA. Trigonometry. Part I: Plane Trigonometry. New York, USA: Henry Holt and Company / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA. p. 15. Retrieved 2017-08-12. https://en.wikipedia.org/wiki/Inverse_function
  32. Scheinerman, Edward R. (2013). Mathematics: A Discrete Introduction. Brooks/Cole. p. 173. ISBN 978-0840049421.
  33. Keisler, Howard Jerome. "Differentiation" (PDF). Retrieved 2015-01-24. §2.4
  34. Scheinerman, Edward R. (2013). Mathematics: A Discrete Introduction. Brooks/Cole. p. 173. ISBN 978-0840049421.
  35. Korn, Grandino Arthur; Korn, Theresa M. (2000) [1961]. "21.2.-4. Inverse Trigonometric Functions". Mathematical handbook for scientists and engineers: Definitions, theorems, and formulars for reference and review (3 ed.). Mineola, New York, USA: Dover Publications, Inc. p. 811;. ISBN 978-0-486-41147-7.
  36. Oldham, Keith B.; Myland, Jan C.; Spanier, Jerome (2009) [1987]. An Atlas of Functions: with Equator, the Atlas Function Calculator (2 ed.). Springer Science+Business Media, LLC. doi:10.1007/978-0-387-48807-3. ISBN 978-0-387-48806-6. LCCN 2008937525.
  37. Briggs, William; Cochran, Lyle (2011). Calculus / Early Transcendentals Single Variable. Addison-Wesley. ISBN 978-0-321-66414-3.
  38. Devlin, Keith J. (2004). Sets, Functions, and Logic / An Introduction to Abstract Mathematics (3rd ed.). Chapman & Hall / CRC Mathematics. ISBN 978-1-58488-449-1.
  39. Fletcher, Peter; Patty, C. Wayne (1988). Foundations of Higher Mathematics. PWS-Kent. ISBN 0-87150-164-3.
  40. Lay, Steven R. (2006). Analysis / With an Introduction to Proof (4 ed.). Pearson / Prentice Hall. ISBN 978-0-13-148101-5.
  41. Smith, Douglas; Eggen, Maurice; St. Andre, Richard (2006). A Transition to Advanced Mathematics (6 ed.). Thompson Brooks/Cole. ISBN 978-0-534-39900-9.
  42. Thomas, Jr., George Brinton (1972). Calculus and Analytic Geometry Part 1: Functions of One Variable and Analytic Geometry (Alternate ed.). Addison-Wesley.
  43. Wolf, Robert S. (1998). Proof, Logic, and Conjecture / The Mathematician's Toolbox. W. H. Freeman and Co. ISBN 978-0-7167-3050-7.
  44. Stryer L, Berg JM, Tymoczko JL (2002). Biochemistry (5th ed.). San Francisco: W.H.Freeman. ISBN 0-7167-4955-6.
  45. Schomburg I, Chang A, Placzek S, Söhngen C, Rother M, Lang M, Munaretto C, Ulas S, Stelzer M, Grote A, Scheer M, Schomburg D (January 2013). "BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA". Nucleic Acids Research. 41 (Database issue): D764–72. doi:10.1093/nar/gks1049. PMC 3531171. PMID 23203881
  46. Radzicka A, Wolfenden R (January 1995). "A proficient enzyme". Science. 267 (5194): 90–931. Bibcode:1995Sci...267...90R. doi:10.1126/science.7809611. PMID 7809611.
  47. Callahan BP, Miller BG (December 2007). "OMP decarboxylase—An enigma persists". Bioorganic Chemistry. 35 (6): 465–9. doi:10.1016/j.bioorg.2007.07.004. PMID 17889251.
  48. Michaelis L, Menten M (1913). "Die Kinetik der Invertinwirkung" [The Kinetics of Invertase Action]. Biochem. Z. (in German). 49: 333–369.; Michaelis L, Menten ML, Johnson KA, Goody RS (2011). "The original Michaelis constant: translation of the 1913 Michaelis-Menten paper". Biochemistry. 50 (39): 8264– 9. doi:10.1021/bi201284u. PMC 3381512. PMID 21888353.
  49. Briggs GE, Haldane JB (1925). "A Note on the Kinetics of Enzyme Action". The Biochemical Journal. 19 (2): 339–339. doi:10.1042/bj0190338. PMC 1259181. PMID 16743508.
  50. Ellis RJ (October 2001). "Macromolecular crowding: obvious but underappreciated". Trends in Biochemical Sciences. 26 (10): 597–604. doi:10.1016/S0968- 0004(01)01938-7. PMID 11590012.
  51. Kopelman R (September 1988). "Fractal reaction kinetics". Science. 241 (4873): 1620
  52. Bibcode:1988Sci...241.1620K. doi:10.1126/science.241.4873.1620. PMID 17820893.
  53. Segel, L.A.; Slemrod, M. (1989). "The quasi-steady-state assumption: A case study in perturbation". ThermochimActa31 (3): 446–477. doi:10.1137/1031091.
  54. Leskovac, V. (2003). Comprehensive enzyme kinetics. New York: Kluwer Academic/Plenum Pub. ISBN 978-0-306-46712-7.
  55. Greco, W.R.; Hakala, M.T. (1979). "Evaluation of methods for estimating the dissociation constant of tight binding enzyme inhibitors,".J BiolChem254 (23): 12104–12109. PMID 500698.
  56. Hayakawa, K.; Guo, L.; Terentyeva, E.A.; Li, X.K.; Kimura, H.; Hirano, M.; Yoshikawa,K.; Nagamine, T. et al. (2006). "Determination of specific activities and kinetic constants of biotinidase and lipoamidase in LEW rat and Lactobacillus casei (Shirota)". J Chromatogr B AnalytTechnol Biomed Life Sci844 (2): 240–50.doi:10.1016/j.jchromb.2006.07.006. PMID 16876490.
  57. Vitthalrao B. Khyade; Vivekanand V. Khyade and Sunanda V. Khyade (2017). The Baramati Quotient for the accuracy in calculation of Km value for Enzyme Kinetics. International Academic Journal of Innovative Research Vol. 4, No. 1, 2017, pp. 1-22.ISSN 2454-390X www.iaiest.com
  58. Seema Karna Dongare, Manali Rameshrao Shinde, Vitthalrao Bhimasha Khyade (2018). Mathematical Inverse Function (Equation) For Enzyme Kinetics. Research Journal of Recent Sciences. Res. J. Recent Sci. Vol. 7(12), 9-15, December (2018). www.isca.in, www.isca.me
  59. Seema Karna Dongare, Manali Rameshrao Shinde, Vitthalrao Bhimasha Khyade (2018). Mathematical Inverse Function (Equation) For Enzyme Kinetics. International Journal of Scientific Research in Chemistry (IJSRCH) | Online ISSN: 2456-8457 © 2018 IJSRCH | Volume 3 | Issue 4: 35– 42. http://ijsrch.com/archive.php?v=3&i=6&pyear=2018

Downloads

Published

2019-01-30

Issue

Section

Research Articles

How to Cite

[1]
Vitthalrao Bhimasha Khyade, Seema Karna Dongare, Manali Rameshrao Shinde, " The Indian Square for Enzyme Kinetics Through the Regular Form of Lineweaver-Burk Plot (Double Reciprocal Plot); It's Inverse Form and Other Additional Form of Plots (Equations), International Journal of Scientific Research in Chemistry(IJSRCH), ISSN : 2456-8457, Volume 4, Issue 1, pp.39-56, January-February-2019.