Biogenic Synthesis of Silver Nanoparticles by the Action of Anthocyanin Extracted from Rose Petals, Soybeans, Red Cabbage and Rice and their Characterizations

Authors

  • Asad Ullah  Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan and Department of Chemistry, Hazara University Mansehra 21120, Khyber Pakhtunkhwa, Pakistan
  • Sufian Rasheed  Department of Chemistry, Government Postgraduate College Kohat (KUST), Kohat 26000, Khyber Pakhtunkhwa, Pakistan and HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi 75270, Karachi, Sindh, Pakistan
  • Amir Ullah  Department of Chemistry, Hazara University Mansehra 21120, Khyber Pakhtunkhwa, Pakistan and Department of Chemistry, Government Postgraduate College Kohat (KUST), Kohat 26000, Khyber Pakhtunkhwa, Pakistan

Keywords:

Nanomaterials, Silver Nanoparticles, Biological Synthesis, Characterizations, Anthocyanin, Green Synthesis of Nanoparticles

Abstract

The biogenic route is used for the synthesis of silver nanoparticles in such a way that anthocyanin was extracted from the rose petals, soybean, red cabbage, and rice treated with 0.1M AgNO3. Silver nanoparticles are the center of attention of researchers from all around the globe due to their reminiscent properties (Physical & Chemical). Herein this reports a fixed ratio of the extract was prepared and mixed with a solution containing metal ions. The color of the solution was changed which confirms the preparation of silver nanoparticles. The color change indicates the formation of silver nanoparticles at initial stages while structural studies and characterization with UV-Vis, FT-IR, and SEM provided further details about the prepared silver nanoparticles. SEM analysis provided the details about the size and morphology of the synthesized silver nanoparticles. The size of prepared nanoparticles was found to be 34 nm and the nanoparticles are having spherical morphology.

References

  1. Ullah, N.; Ullah, A.; Rasheed, S. Green synthesis of copper nanoparticles using extract of Dicliptera Roxburghiana, their characterization and photocatalytic activity against methylene blue degradation. Lett. Appl. NanoBioScience. 2020, 9, 897-901. https://doi.org/https://doi.org/10.33263/L ANBS91.897901.
  2. Singh, P.; Kim, Y. J.; Zhang, D.; Yang, D. C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends biotechnol. 2016, 34(7), 588-599. https://doi.org/10.1016/j.tibtech.2016.02.006.
  3. Goutam, S. P.; Saxena, G.; Roy, D.; Yadav, A. K..; Bharagava, R. N. Green synthesis of nanoparticles and their applications in water and wastewater treatment. In Bioremediation of Industrial Waste for Environmental Safety. 2020, 349-379. https://doi.org/10.1007/978-981-13-1891-7_16.
  4. Castillo-Henríquez, L.; Alfaro-Aguilar, K., Ugalde-Álvarez, J.; Vega-Fernández, L.; Montes de Oca-Vásquez, G.; Vega-Baudrit, J. R. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. Nanomaterials, 2020, 10(9), 1763. https://doi.org/10.3390/nano10091763.
  5. Zaib, M.; Shahzadi, T.; Muzammal, I.; Farooq, U. Catharanthus roseus extract mediated synthesis of cobalt nanoparticles: evaluation of antioxidant, antibacterial, hemolytic and catalytic activities. Inorg. Nano-Metal Chem. 2020, 1-10. https://doi.org/10.1080/24701556.2020.1737819.
  6. Al-Hakkani, M. F. Biogenic copper nanoparticles and their applications. SN Appl. Sci. 2020, 2(3), 1-20. https://doi.org/10.1007/s42452-020-2279-1.
  7. Ovais, M.; Khalil, A. T.; Islam, N. U.; Ahmad, I.; Ayaz, M., Saravanan, M.; Shinwari, Z. K.; Mukherjee, S. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl. Microbiol Biotechnol. 2018, 102, 6799–6814. https://doi.org/10.1007/s00253-018-9146-7
  8. Sherin, L.; Sohail, A.; Mustafa, M.; Jabeen, R.; Ul-Hamid, A. Facile green synthesis of silver nanoparticles using Terminalia bellerica kernel extract for catalytic reduction of anthropogenic water pollutants. Colloids Interface Sci. Commun. 2020, 37, 100276. https://doi.org/10.1016/j.colcom.2020.100276.
  9. Yaqoob, A. A.; Umar, K.; Ibrahim, M. N. M. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl. Nanosci. 2020, 1-10. https://doi.org/10.1007/s13204-020-01318-w.
  10. 0Akhbari, K.; Morsali, A.; Retailleau, P. Silver nanoparticles from the thermal decomposition of a two-dimensional nano-coordination polymer. Polyhedron. 2010, 29(18), 3304-3309. https://doi.org/10.1016/j.poly.2010.09.011.
  11. D’Souza, S.; Mashazi, P.; Britton, J.; Nyokong, T. Effects of differently shaped silver nanoparticles on the photophysics of pyridylsulfanyl-substituted phthalocyanines. Polyhedron. 2015, 99, 112-121. https://doi.org/10.1016/j.poly.2015.06.038.
  12. Hashimoto, T.; Mustafa, G.; Nishiuchi, T.; Komatsu, S. Comparative analysis of the effect of inorganic and organic chemicals with silver nanoparticles on soybean under flooding stress. Int. J. Mol. Sci. 2020, 21(4), 1300. https://doi.org/10.3390/ijms21041300.
  13. Tsai, C. H.; Whiteley, C. G.; Lee, D. J. Interactions between HIV-1 protease, silver nanoparticles, and specific peptides. J. Taiwan. Inst. Chem. E. 2019, 103, 20-32. https://doi.org/10.1016/j.jtice.2019.07.019.
  14. Tabaran, A. F.; Matea, C. T.; Mocan, T.; Tabaran, A.; Mihaiu, M.; Iancu, C.; Mocan, L. Silver Nanoparticles for the Therapy of Tuberculosis. Int. J. Nanomedicine. 2020, 15, 2231. https://doi.org/10.2147/IJN.S241183.
  15. Begum, R.; Farooqi, Z. H.; Aboo, A. H.; Ahmed, E.; Sharif, A.; Xiao, J. Reduction of nitroarenes catalyzed by microgel-stabilized silver nanoparticles. J. Hazard. Mater. 2019, 377, 399-408. https://doi.org/10.1016/j.jhazmat.2019.05.080.
  16. Eisa, W. H.; Zayed, M. F.; Anis, B.; Abbas, L. M.; Ali, S. S.; Mostafa, A. M. Clean production of powdery silver nanoparticles using Zingiber officinale: the structural and catalytic properties. J. Clean. Prod. 2019, 241, 118398. https://doi.org/10.1016/j.jclepro.2019.118398.
  17. Aadil, K. R.; Pandey, N.; Mussatto, S. I.; Jha, H. Green synthesis of silver nanoparticles using acacia lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity. J. Environ. Chem. Eng. 2019, 7(5), 103296. https://doi.org/10.1016/j.jece.2019.103296.
  18. Talapko, J.; Matijevi?, T.; Juzbaši?, M.; Antolovi?-Požgain, A.; Škrlec, I. Antibacterial Activity of Silver and Its Application in Dentistry, Cardiology and Dermatology. Microorganisms. 2020, 8(9), 1400. https://doi.org/10.3390/microorganisms8091400
  19. Maghimaa, M.; Alharbi, S. A. Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity. J. Photochem. Photobiol. B Biol. 2020, 204, 111806. https://doi.org/10.1016/j.jphotobiol.2020.111806
  20. Durán, N.; Marcato, P. D.; Alves, O. L.; De Souza, G. I. H.; Esposito, E. Mechanistic Aspects of Biosynthesis of Silver Nanoparticles by Several Fusarium Oxysporum Strains. J. Nanobiotechnology 2005, 3(1), 8. https://doi.org/10.1186/1477-3155-3-8.
  21. Zi?bka, M., & Dziadek, M. (2019). Long-Lasting Examinations of Surface and Structural Properties of Medical Polypropylene Modified with Silver Nanoparticles. Polymers (Basel). 2019, 11(12), 2018. https://doi.org/10.3390/polym11122018.

Downloads

Published

2021-02-28

Issue

Section

Research Articles

How to Cite

[1]
Asad Ullah, Sufian Rasheed, Amir Ullah, " Biogenic Synthesis of Silver Nanoparticles by the Action of Anthocyanin Extracted from Rose Petals, Soybeans, Red Cabbage and Rice and their Characterizations, International Journal of Scientific Research in Chemistry(IJSRCH), ISSN : 2456-8457, Volume 6, Issue 1, pp.06-15, January-February-2021.