Advances in the Development of New Bioactive Polyhydroquinolines

Authors

  • Dipti K. Dodiya  Department of Chemistry, H. & H. B. Kotak Institute of Science-Rajkot, Gujarat, India

Keywords:

Polyhydroquinolines, Hexahydroquinolines, Tetrahydroquinolines

Abstract

Quinoline derivatives have been of immense interest due to their wide spectrum biological activity profile. Among quinolines derivatives, polyhydroquinolines including hexahydroquinolines, tetrahydroquinolines, dihydroquinolines etc. have attracted considerable attention from the bioactivity point of view. The present paper covers a brief report of approaches to newer bioactive polyhydroquinoline derivatives.

References

  1. Abdelmoniem, A., Mohamed, M., Abdelmoniem, D., Ghozlan, S., Abdelhamid, I.. (2019). Recent Synthetic Approaches and Biological Evaluations of Amino Hexahydroquinolines and Their Spirocyclic Structures. Anticancer Agents Med Chem., 19(7):875-915.
  2. Sabale, P. Kaur, P. (2013). 1,2,3,4-Tetrahydroquinoline Derivatives and its Significance in Medicinal Chemistry, Asian J. Research Chem. 6(6): 599-610.
  3. Mansour, S., Mostafa, M., Mohammed, S. and Mostafa, M., Synthesis and in vitro anticancer evaluation of some novel hexahydroquinoline derivatives having a benzenesulfonamide moiety. (2011). European Journal of Medicinal Chemistry, 46: 201-207.
  4. Rahime, ?., Burçin, ?. And ?nci, S. (2000). Synthesis and calcium antagonistic activity of 2,6,6-trimethyl-3-carbomethoxy(ethoxy)-4-aryl-1,4,5,6,7,8-hexahydroquinoline derivatives. Il Farmaco, 55: 665-668.
  5. Zarghi, A., Sabakhi, I., Topuzyan, V., Hajimahdi, Z. and Daraie, B. (2014). Design, synthesis and biological evaluation of 5-oxo-1,4,5,6,7,8 hexahydroquinoline derivatives as selective cyclooxygenase-2 inhibitors. Iran J Pharm Res, 13: 61-65.
  6. Miyase, G., Gökçe, S., Rahime, ?. And Cihat, ?. (2008). Evaluation of myorelaxant activity of 7-substituted hexahydroquinoline derivatives in isolated rabbit gastric fundus. European Journal of Medicinal Chemistry, 43: 562-568.
  7. Saleh, I., Areej, M., Ahmed, M. and Mostafa, M. (2009). Synthesis and biological evaluation of 2-amino-7,7-dimethyl 4-substituted-5-oxo-1-(3,4,5-trimethoxy)-1,4,5,6,7,8-hexahydro-quinoline-3-carbonitrile derivatives as potential cytotoxic agents. Bioorganic & Medicinal Chemistry Letters, 19: 6939-6942.
  8. Shahraki, O., Edraki, N., Khoshneviszadeh, M. and Zargari, F. (2017). Novel 5-oxo-hexahydroquinoline derivatives: design, synthesis, in vitro P-glycoprotein-mediated multidrug resistance reversal profile and molecular dynamics simulation study. Drug Des Dev Therapy, 11: 407-412.
  9. Vanaerschot, M., Lucantoni, L., Li, T., Combrinck, J. M. and Ruecker, A. (2017). Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity. Nat Microbiol, 2: 1403.
  10. Safak, C., Erdemli, I. and Sunal, R. (2003). Synthesis of some 1,4,5,6,7,8-hexahydroquinoline derivatives and their calcium antagonistic activity. Arzneimittelforschung, 43: 1052–1055.
  11. Miri, R., Javidnia, K., Mirkhani, H., Hemmateenejad, B. and Sepeher Z. (2007). Synthesis, QSAR and calcium channel modulator activity of new hexahydroquinoline derivatives containing nitroimidazole. Chem. Biol. Drug Des., 70: 329–336.
  12. Yang, X.-H., Zhang, P.-H., Zhou, Y., Liu, C., Lin, X. (2011). Synthesis and antioxidant evaluation of novel 4-aryl-hexahydroquinolines from lignin. Arkivoc, 10: 327–337.
  13. ?im?ek, R., ?afak, C., Erol, K. and Sirmagül, B. (2001). Studies on calcium antagonist activities of 2-ethyl-3-carbmethoxy-4-aryl-5-oxo-6,6-dimethyl-1,4,5,6,7,8-hexahydroquinoline derivatives. Arzneimittelforschung, 51: 959–963.
  14. K?smetli, E., ?afak, C., Erol. K., S?rmagül, B. and Linden, A. (2004). Studies on 3-diethyl-aminocarbonyl-1,4,5,6,7,8-hexahydroquinoline derivatives and their calcium channel antagonistic activities in vitro. Arzneimittelforschung, 54: 371–375.
  15. El-Khouly, A., Gündüz, M., Cengelli, C., ?im?ek, R. and Erol, K. (2013). Microwave-assisted synthesis and spasmolytic activity of 4-indolylhexahydroquinoline derivatives. Drug Res, 63: 579–585.
  16. Anderson, J. C., Noble, A. and Torres, P. R. (2012). An intramolecular nitro-Mannich route to functionalised tetrahydroquinolines. Tetrahedron Letters, 53(42): 5707-5710.
  17. Zhang, S., Hu, D. B., He, J. B., Guan, K. Y. and Zhu, H. J. (2014). A novel tetrahydroquinoline acid and a new racemic benzofuranone from Capparis spinosa L., a case study of absolute configuration determination using quantum methods. Tetrahedron, 70(4): 869-873.
  18. Broggini, G., Colombo, F., De Marchi, I., Galli, S., Martinelli, M. and Zecchi, G. (2007). Synthesis of enantiopure 4-amino-3-hydroxymethyl-tetrahydroquinolines via an intramolecular nitrone cycloaddition. Tetrahedron: Asymmetry, 18(12): 1495-1501.
  19. Maj, A. M., Suisse, I., Hardouin, C. and Agbossou-Niedercorn, F. (2013). Synthesis of new chiral 2-functionalized-1, 2, 3, 4-tetrahydroquinoline derivatives via asymmetric hydrogenation of substitutedquinolines. Tetrahedron, 69(44): 9322-9328.
  20. Kouznetsov, V. V., Gómez, C. M. M., Ruíz, F. A. and Olmo, E. (2007). Three-component imino Diels–Alder reaction with essential oil and seeds of anise: generation of new tetrahydroquinolines. Tetrahedron Letters, 48(50): 8855-8860.
  21. Chakraborty, A. and Das, L. (2017). Conformational landscape, stability, potential energy curves and vibrations of 1, 2, 3, 4 tetrahydroquinoline. Journal of Molecular Structure, 1136: 80-89.
  22. Zhou, X. F., Sun, Y. Y., Dai, J. J., Xu, J. and Xu, H. J. (2018). Photoinduced synthesis of quinoline derivatives catalyzed by organic photocatalyst at room temperature. Journal of Photochemistry and Photobiology A: Chemistry, 355: 186-193.
  23. Lu, X., Pu, Y., Kong, W., Tang, X., Zhou, J., Gou, H. and Shen, J. (2017). Antidesmone, a unique tetrahydroquinoline alkaloid, prevents acute lung injury via regulating MAPK and NF-κB activities. International immunopharmacology, 45: 34-42.
  24. Sun, N., Ma, X., Zhou, K., Zhu, C., Cao, Z., Wang, Y. and Fu, W. (2020). Discovery of novel N-sulfonamide-tetrahydroquinolines as potent retinoic acid receptor-related orphan receptor γt inverse agonist for the treatment of autoimmune diseases. European Journal of Medicinal Chemistry, 187: 111984-111987.
  25. Núñez, Y. A. R., Norambuena, M., Bohorquez, A. R. R., Morales-Bayuelo, A. and Gutíerrez, M. (2019). Efficient synthesis and antioxidant activity of novel N-propargyl tetrahydroquinoline derivatives through the cationic Povarov reaction. Heliyon, 5(8): e02174-e02181.
  26. Goli, N., Mainkar, P. S., Kotapalli, S. S., Tejaswini, K., Ummanni, R. and Chandrasekhar, S. (2017). Expanding the tetrahydroquinoline pharmacophore. Bioorganic & Medicinal Chemistry Letters, 27(8): 1714-1720.
  27. Li, Y. S., Liu, X. Y., Zhao, D. S., Liao, Y. X., Zhang, L. H., Zhang, F. Z. and Cui, Z. N. (2018). Tetrahydroquinoline and tetrahydroisoquinoline derivatives as potential selective PDE4B inhibitors. Bioorganic & Medicinal Chemistry Letters, 28(19): 3271-3275.
  28. Duan, C., Yao, Y., Ye, L., Shi, Z., Zhao, Z. and Li, X. (2018). Highly stereoselective construction of tetrahydroquinolines via cascade aza-Michael-Michael reaction: Formal [4+2] cycloaddition of β, γ-unsaturated α-ketoesters with 2-aminochalcones. Tetrahedron, 74(50): 7179-7185.
  29. Supranovich, V. I. and Dilman, A. D. (2019). Synthesis of tetrafluorinated
  30. tetrahydroquinolines via photoredox catalysis. Mendeleev Communications, 29(5): 515-516.
  31. Xin, J. R., Guo, J. T., Vigliaturo, D., He, Y. H. and Guan, Z. (2017). Metal-free visible light driven synthesis of tetrahydroquinoline derivatives utilizing Rose Bengal. Tetrahedron, 73(31): 4627-4633.
  32. Wang, J., Li, K., Zhou, X., Han, W., Wan, N., Cui, B. and Chen, Y. (2017). Asymmetric combinational “metal-biocatalytic system”: One approach to chiral 2-subsituted-tetrahydroquinoline-4-ols towards two-step one-pot processes in aqueous media. Tetrahedron Letters, 58(23): 2252-2254.
  33. Diaz-Muñoz, G., Isidorio, R. G., Miranda, I. L., de Souza Dias, G. N. and Diaz, M. A. N. (2017). A concise and efficient synthesis of tetrahydroquinoline alkaloids using the phase transfer mediated Wittig olefination reaction. Tetrahedron Letters, 58(33): 3311-3315.
  34. Castillo, J. C., Jiménez, E., Portilla, J., Insuasty, B., Quiroga, J., Moreno-Fuquen, R. and Abonia, R. (2018). Application of a catalyst-free Domino Mannich/Friedel-Crafts alkylation reaction for the synthesis of novel tetrahydroquinolines of potential antitumor activity. Tetrahedron, 74(9): 932-947.
  35. Madhuban, M. V., Shankar, R., Krishna, T., Kumar, Y. S., Chiranjeevi, Y., Muralikrishna, C. and Akula, R. (2017). A convergent approach towards the synthesis of the 2-alkyl-substituted tetrahydroquinoline alkaloid (−)-cuspareine. Tetrahedron: Asymmetry, 28(12): 1803-1807.
  36. Filatova, E. V., Turova, O. V., Nigmatov, A. G. and Zlotin, S. G. (2018). Green asymmetric synthesis of tetrahydroquinolines in carbon dioxide medium promoted by lipophilic bifunctional tertiary amine–squaramide organocatalysts. Tetrahedron, 74(1): 157-164.
  37. Sheikhhosseini, E., Farrokhi, E. and Bigdeli, M. A. (2016). Synthesis of novel tetrahydroquinoline derivatives from α, α′-bis (substituted-benzylidene) cycloalkanones. Journal of Saudi Chemical Society, 20: S227-S230.
  38. Lee, Y. R. and Hung, T. V. (2008). Ethylenediamine diacetate (EDDA)-catalyzed one-pot synthesis of tetrahydroquinolines by domino Knoevenagel/hetero Diels–Alder reactions from 1, 3-dicarbonyls. Tetrahedron, 64(30-31): 7338-7346.
  39. Yadav, J. S., Reddy, B. V. S., Srinivas, M. and Padmavani, B. (2004). CeCl3· H2O/NaI-Promoted stereoselective synthesis of 2, 4-disubstituted chiral tetrahydroquinolines. Tetrahedron, 60(14): 3261-3266.
  40. Goujon, J. Y., Zammattio, F., Chrétien, J. M. and Beaudet, I. (2004). A new approach to 2, 2-disubstituted chromenes and tetrahydroquinolines through intramolecular cyclization of chiral 3, 4-epoxy alcohols. Tetrahedron, 60(18): 4037-4049.
  41. Palaniappan, S., Rajender, B. and Umashankar, M. (2012). Controllable stereoselective synthesis of cis or trans pyrano and furano tetrahydroquinolines: Polyaniline-p-toluenesulfonate salt catalyzed one-pot aza-Diels–Alder reactions. Journal of Molecular Catalysis A: Chemical, 352: 70-74.
  42. Rafiee, E. and Azad, A. (2007). Cobaltpolyoxometalate-catalyzed cyclization of glucal with aryl amines: Synthesis of 2, 4-disubstituted tetrahydroquinolines. Bioorganic & Medicinal Chemistry Letters, 17(10): 2756-2759.
  43. Kumar, A., Sharma, S., Tripathi, V. D., Maurya, R. A., Srivastava, S. P., Bhatia, G., & Srivastava, A. K. (2010). Design and synthesis of 2, 4-disubstituted polyhydroquinolines as prospective antihyperglycemic and lipid modulating agents. Bioorganic & Medicinal Chemistry, 18(11): 4138-4148.
  44. Schrader, T. O., Kasem, M., Sun, Q., Wu, C., Ren, A. and Semple, G. (2016). Complementary asymmetric routes to fused tricyclic (R)-2, 3, 4, 4a, 5, 6-hexahydro-1H-pyrazino [1, 2-a] quinolines and (R)-1, 2, 3, 4, 5, 5a, 6, 7-octahydro-[1, 4] diazepino [1, 2-a] quinolines. Tetrahedron Letters, 57(42): 4730-4733.
  45. Ladani, N. K., Mungra, D. C., Patel, M. P., and Patel, R. G. (2011). Microwave assisted synthesis of novel Hantzsch 1, 4-dihydropyridines, acridine-1, 8-diones and polyhydroquinolines bearing the tetrazolo [1, 5-a] quinoline moiety and their antimicrobial activity assess. Chinese Chemical Letters, 22(12): 1407-1410.
  46. Raouf, H., Allameh, S., Beiramabadi, S. A., Morsali, A. (2018). An Efficient and Facile Synthesis of Polyhydroquinolines through Hantzsch Reaction Catalyzed by a Novel and Reusable Cu (II) Complex. J Biochem Tech, 9(1):61-64.

Downloads

Published

2020-07-30

Issue

Section

Research Articles

How to Cite

[1]
Dipti K. Dodiya, " Advances in the Development of New Bioactive Polyhydroquinolines , International Journal of Scientific Research in Chemistry(IJSRCH), ISSN : 2456-8457, Volume 5, Issue 4, pp.59-68, July-August-2020.