Multicomponent Single Step Microwave Induced Organic Synthesis
Keywords:
Antifungal, Catalyst, Chitosan, ImidazoleAbstract
In the present work, a green, rapid, convenient and eco-friendly method for the synthesis of imidazoles is described. In this method, we used benzaldehyde and ammonium acetate in the presence of Chitosan catalyst, which acted as an efficient Biocatalyst. This protocol has many advantages such as short reaction time, high yield, easy separation of the catalyst. We used FT-IR, 1H and 13C NMR analyses were performed for the confirmation of the synthesized products. Imidazole produced good or moderate activities particularly against the tested bacteria and Fungi. Compounds displayed marked antifungal and antibacterial activity against. In the present work, a green, rapid, convenient and eco-friendly method for the synthesis of imidazoles is described. In this method, we used benzaldehyde and ammonium acetate in the presence of Chitosan catalyst, which acted as an efficient Biocatalyst. This protocol has many advantages such as short reaction time, high yield, easy separation of the catalyst. We used FT-IR, 1H and 13C NMR analyses were performed for the confirmation of the synthesized products. Imidazole produced good or moderate activities particularly against the tested bacteria and Fungi. Compounds displayed marked antifungal and antibacterial activity against.
References
- Roy, M. S., Meng, X., Koda, K., Rasapalli, S., Gout, D., & Lovely, C. J. (2019). Total synthesis of (−)-haploscleridamine. Tetrahedron Letters, 60(14), 979-982.
- O'Malley, D. P., Li, K., Maue, M., Zografos, A. L., & Baran, P. S. (2007). Total synthesis of dimeric pyrrole− imidazole alkaloids: Sceptrin, Ageliferin, Nagelamide E, Oxysceptrin, Nakamuric acid, and the Axinellamine carbon skeleton. Journal of the American Chemical Society, 129(15), 4762-4775.
- Van Leusen, A. M., Wildeman, J., & Oldenziel, O. H. (1977). Chemistry of sulfonylmethyl isocyanides. 12. Base-induced cycloaddition of sulfonylmethyl isocyanides to carbon, nitrogen double bonds. Synthesis of 1, 5-disubstituted and 1, 4, 5-trisubstituted imidazoles from aldimines and imidoyl chlorides. The Journal of Organic Chemistry, 42(7), 1153-1159.
- Ma, B. B., Peng, Y. X., Zhao, P. C., & Huang, W. (2015). cis and trans Isomers distinguished by imidazole N-alkylation after Debus-Radziszewski reaction starting from 2, 7-di-tert-butyl-pyrene-4, 5, 9, 10-tetraone. Tetrahedron, 71(21), 3195-3202.
- Kerru, N., Bhaskaruni, S. V., Gummidi, L., Maddila, S. N., Maddila, S., & Jonnalagadda, S. B. (2019). Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives. Synthetic Communications, 49(19), 2437-2459.
- Sultanova, R. M., Khusnutdinova, N. S., Borisova, Y. G., Raskildina, G. Z., Meshcheryakova, S. A., Samorodov, A. V., & Zlotskii, S. S. (2023). Synthesis and antiplatelet activity of 2-substituted imidazolines. Russian Chemical Bulletin, 72(7), 1711-1716.
- Dhameliya, T. M., Tiwari, R., Patel, K. I., Vagolu, S. K., Panda, D., Sriram, D., & Chakraborti, A. K. (2022). Bacterial FtsZ inhibition by benzo [d] imidazole-2-carboxamide derivative with anti-TB activity. Future Medicinal Chemistry, 14(19), 1361-1373.
- Nikitin, E. A., Shpakovsky, D. B., Tyurin, V. Y., Kazak, A. A., Gracheva, Y. A., Vasilichin, V. A., ... & Milaeva, E. R. (2022). Novel organotin complexes with phenol and imidazole moieties for optimized antitumor properties. Journal of Organometallic Chemistry, 959, 122212.
- Teli, P., Sahiba, N., Sethiya, A., Soni, J., & Agarwal, S. (2022). Imidazole derivatives: Impact and prospects in antiviral drug discovery. Imidazole-Based Drug Discovery, 167.
- Soliman, S. M. A., Sanad, M. F., & Shalan, A. E. (2021). Synthesis, characterization and antimicrobial activity applications of grafted copolymer alginate-g-poly (N-vinyl imidazole). RSC advances, 11(19), 11541-11548.
- Rani, N., Kumar, P., Singh, R., de Sousa, D. P., & Sharma, P. (2020). Current and future prospective of a versatile moiety: imidazole. Current Drug Targets, 21(11), 1130-1155.
- Chawla, A., Sharma, A., & Sharma, A. K. (2012). A convenient approach for the synthesis of imidazole derivatives using microwaves. ChemInform, 43(24), no.
- Shi, S., Xu, K., Jiang, C., & Ding, Z. (2018). ZnCl2-Catalyzed [3+ 2] cycloaddition of benzimidates and 2 H-azirines for the synthesis of imidazoles. The Journal of Organic Chemistry, 83(23), 14791-14796.
- Cai, J., Bai, H., Wang, Y., Xu, X., Xie, H., & Liu, J. (2019). Base-mediated regioselective [3+ 2] annulation of ketenimines and isocyanides: efficient synthesis of 1, 4, 5-trisubstituted imidazoles. Chemical Communications, 55(26), 3821-3824.
- Tian, Y., Qin, M., Yang, X., Zhang, X., Liu, Y., Guo, X., & Chen, B. (2019). Acid-catalyzed synthesis of imidazole derivatives via N-phenylbenzimidamides and sulfoxonium ylides cyclization. Tetrahedron, 75(19), 2817-2823.
- Sundar, S., & Rengan, R. (2019). Direct synthesis of 2, 4, 5-trisubstituted imidazoles from primary alcohols by diruthenium (ii) catalysts under aerobic conditions. Organic & biomolecular chemistry, 17(6), 1402-1409.
- Huigens III, R. W., Reyes, S., Reed, C. S., Bunders, C., Rogers, S. A., Steinhauer, A. T., & Melander, C. (2010). The chemical synthesis and antibiotic activity of a diverse library of 2-aminobenzimidazole small molecules against MRSA and multidrug-resistant A. baumannii. Bioorganic & medicinal chemistry, 18(2), 663-674.
- Kerru, N., Bhaskaruni, S. V., Gummidi, L., Maddila, S. N., Maddila, S., & Jonnalagadda, S. B. (2019). Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives. Synthetic Communications, 49(19), 2437-2459.
- Prashanth, K. H., & Tharanathan, R. N. (2007). Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends in food science & technology, 18(3), 117-131.
- Safari, J., Akbari, Z., & Naseh, S. (2016). Nanocrystalline MgAl2O4 as an efficient catalyst for one-pot synthesis of multisubstituted imidazoles under solvent-free conditions. Journal of Saudi Chemical Society, 20, S250-S255.
- Shaabani, A., Afshari, R., & Hooshmand, S. E. (2017). Crosslinked chitosan nanoparticle-anchored magnetic multi-wall carbon nanotubes: A bio-nanoreactor with extremely high activity toward click-multi-component reactions. New Journal of Chemistry, 41(16), 8469-8481.
- Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in polymer science, 36(8), 981-1014.
- Atia, A. J. K. (2009). Synthesis and antibacterial activities of new metronidazole and imidazole derivatives. Molecules, 14(7), 2431-2446.
- A.W.Bauer,D.M.Perry,and Kirby,“Single-Disk Antibiotic-Sensitivity Testing of Staphylococci: An Analysis of Technique and Results”,AMA Arch Intern Med.,104,No.2,208–216,1959.
- P. K.Sahu, P. K. Sahu, S. K., Gupta, & D. D.Agarwal,Chitosan: An efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Industrial & Engineering Chemistry Research,53,No.6,2085-2091,2014.
- Kanawaade, P., Sharma, N., Pandhare, R., & Kanawade, M. P. A Review On: Imidazole Derivatives As A Multifunctional Moiety. European Journal of Molecular & Clinical Medicine, 10(01), 2023.
- Romero, D. H., Heredia, V. E. T., García-Barradas, O., López, M. E. M., & Pavón, E. S. (2014). Synthesis of imidazole derivatives and their biological activities. J Chem Biochem, 2(2), 45-83.
- Siwach, A., & Verma, P. K. (2021). Synthesis and therapeutic potential of imidazole containing compounds. BMC chemistry, 15, 1-69.
- Emami, L., Faghih, Z., Ataollahi, E., Sadeghian, S., Rezaei, Z., & Khabnadideh, S. (2023). Azole derivatives: Recent advances as potent antibacterial and antifungal agents. Current Medicinal Chemistry, 30(2), 220-249.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRCH

This work is licensed under a Creative Commons Attribution 4.0 International License.