Synthesis, Characterization and Antibacterial Activity of Imidazole Derivatives
Keywords:
Antibacterial, Antifungal Activity, Imidazole, ChitosanAbstract
Among the bioactive heterocyclic frameworks, nitrogen containing multisubstituted imidazoles are versatile building blocks of many naturally occurring products. In the present work, we have designed a procedure for synthesizing a biologically active imidazoles using Biodegradable Chitosan Catalyst. The synthesized compounds were characterized by IR, NMR, mass spectral. All the compounds were tested for antibacterial and antifungal activities. The antimicrobial activities of the compounds were assessed by Disc diffusion method.
References
- Domling, A., Wang, W., & Wang, K. (2012). Chemistry and biology of multicomponent reactions. Chemical reviews, 112(6), 3083-3135.
- Weber, L. (2002). The application of multi-component reactions in drug discovery. Current Medicinal Chemistry, 9(23), 2085-2093.
- Orru, R. V., & de Greef, M. (2003). Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis, 2003(10), 1471-1499.
- Field, R. A., Haines, A. H., Chrystal, E. J., & Luszniak, M. C. (1991). Histidines, histamines and imidazoles as glycosidase inhibitors. Biochemical journal, 274(3), 885-889.
- Choi, J. H., Abe, N., Tanaka, H., Fushimi, K., Nishina, Y., Morita, A., ... & Kawagishi, H. (2010). Plant-growth regulator, imidazole-4-carboxamide, produced by the fairy ring forming fungus Lepista sordida. Journal of agricultural and food chemistry, 58(18), 9956-9959.
- Naureen, S., Chaudhry, F., Munawar, M. A., Ashraf, M., Hamid, S., & Khan, M. A. (2018). Biological evaluation of new imidazole derivatives tethered with indole moiety as potent α-glucosidase inhibitors. Bioorganic Chemistry, 76, 365-369.
- dos Santos Nascimento, M. V. P., Munhoz, A. C. M., Facchin, B. M. D. C., Fratoni, E., Rossa, T. A., Sá, M. M., ... & Dalmarco, E. M. (2019). New pre-clinical evidence of anti-inflammatory effect and safety of a substituted fluorophenyl imidazole. Biomedicine & Pharmacotherapy, 111, 1399-1407.
- Zheng, X., Ma, Z., & Zhang, D. (2020). Synthesis of imidazole-based medicinal molecules utilizing the van leusen imidazole synthesis. Pharmaceuticals, 13(3), 37.
- Tian, X., Song, L., Rudolph, M., Rominger, F., Oeser, T., & Hashmi, A. S. K. (2019). Sulfilimines as Versatile Nitrene Transfer Reagents: Facile Access to Diverse Aza?Heterocycles. Angewandte Chemie International Edition, 58(11), 3589-3593.
- Geng, X., Wang, C., Huang, C., Bao, Y., Zhao, P., Zhou, Y., ... & Wu, A. X. (2019). Employing TosMIC as a C1N1 “two-atom synthon” in imidazole synthesis by neighboring group assistance strategy. Organic letters, 22(1), 140-144.
- Marzouk, A. A., Abu?Dief, A. M., & Abdelhamid, A. A. (2018). Hydrothermal preparation and characterization of ZnFe2O4 magnetic nanoparticles as an efficient heterogeneous catalyst for the synthesis of multi?substituted imidazoles and study of their anti?inflammatory activity. Applied Organometallic Chemistry, 32(1), e3794.
- Thwin, M., Mahmoudi, B., Ivaschuk, O. A., & Yousif, Q. A. (2019). An efficient and recyclable nanocatalyst for the green and rapid synthesis of biologically active polysubstituted pyrroles and 1, 2, 4, 5-tetrasubstituted imidazole derivatives. RSC advances, 9(28), 15966-15975.
- Varzi, Z., & Maleki, A. (2019). Design and preparation of ZnS?ZnFe2O4: a green and efficient hybrid nanocatalyst for the multicomponent synthesis of 2, 4, 5?triaryl?1H?imidazoles. Applied Organometallic Chemistry, 33(8), e5008.
- Kerru, N., Bhaskaruni, S. V., Gummidi, L., Maddila, S. N., Maddila, S., & Jonnalagadda, S. B. (2019). Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives. Synthetic Communications, 49(19), 2437-2459.
- Maleki, A., & Paydar, R. (2015). Graphene oxide–chitosan bionanocomposite: a highly efficient nanocatalyst for the one-pot three-component synthesis of trisubstituted imidazoles under solvent-free conditions. RSC advances, 5(42), 33177-33184.
- Khan, K., & Siddiqui, Z. N. (2015). An efficient synthesis of tri-and tetrasubstituted imidazoles from benzils using functionalized chitosan as biodegradable solid acid catalyst. Industrial & Engineering Chemistry Research, 54(26), 6611-6618.
- Safari, J., Akbari, Z., & Naseh, S. (2016). Nanocrystalline MgAl2O4 as an efficient catalyst for one-pot synthesis of multisubstituted imidazoles under solvent-free conditions. Journal of Saudi Chemical Society, 20, S250-S255.
- Agarwal, S., Kidwai, M., Poddar, R., & Nath, M. (2017). A Facile and Green Approach for the One?Pot Multicomponent Synthesis of 2, 4, 5?Triaryl?and 1, 2, 4, 5?Tetraarylimidazoles by Using Zinc?Proline Hybrid Material as a Catalyst. ChemistrySelect, 2(32), 10360-10364.
- Bugnicourt, L., & Ladavière, C. (2016). Interests of chitosan nanoparticles ionically cross-linked with tripolyphosphate for biomedical applications. Progress in polymer science, 60, 1-17.
- Ozcan, I., Senyigit, T., Gökce, E. H., & Ozer, O. (2010). Current status of chitosan on dermal/transdermal drug delivery systems. Chitosan: Manufacture, Properties and Usage. New York: NOVA Science Publishers, Inc, 449-484.
- Saravanan, S., Selvan, P. S., Gopal, N., Gupta, J. K., & De, B. (2005).Synthesis and antibacterial activity of some imidazole?5?(4H) one derivatives. Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry, 338(10), 488-492.
- A.W.Bauer,D.M.Perry,and Kirby,“Single-Disk Antibiotic-Sensitivity Testing of Staphylococci: An Analysis of Technique and Results”,AMA Arch Intern Med.,104,No.2,208–216,1959.
- P. K.Sahu, P. K. Sahu, S. K., Gupta, & D. D.Agarwal,Chitosan: An efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Industrial & Engineering Chemistry Research,53,No.6,2085-2091,2014.
- Kanawaade, P., Sharma, N., Pandhare, R., & Kanawade, M. P. A Review On: Imidazole Derivatives As A Multifunctional Moiety. European Journal of Molecular & Clinical Medicine, 10(01), 2023.
- Sharma, A., Kumar, V., Kharb, R., Kumar, S., Chander Sharma, P., & Pal Pathak, D. (2016). Imidazole derivatives as potential therapeutic agents. Current pharmaceutical design, 22(21), 3265-3301.
- Brokait?, K., Mickevi?ius, V., & Vaickelionien?, R. (2008). N-alkylation products of substituted imidazoles and dihydropyrimidinediones with dibromoalkanes. Chemistry of Heterocyclic Compounds, 44(1).
- Sharma, D., Narasimhan, B., Kumar, P., Judge, V., Narang, R., De Clercq, E., & Balzarini, J. (2009). Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives. European journal of medicinal chemistry, 44(6), 2347-2353.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRCH

This work is licensed under a Creative Commons Attribution 4.0 International License.