Synthesis and Antibacterial Activity of Some Imidazole-(1H) Derivatives

Authors

  • Ajay M. Patil  Department of Fishery Science, Pratishthan College Paithan, Chh.Sambhajinagar, India
  • Dnyanoba Kasab  Department of Chemistry, Pratishthan College Paithan, Chh.Sambhajinagar, India
  • Mahananda Raut  Department of Chemistry, Sunderrao Solanke Mahavidyalaya Majalgaon, Beed, India
  • Archana Kachare  Department of Chemistry, Sunderrao Solanke Mahavidyalaya Majalgaon, Beed, India

Keywords:

Chitosan, Imidazole, Antibacterial, Green Catalyst.

Abstract

There has been increased focus on the development of green and sustainable catalytic procedures for the building of novel and biologically potent imidazole conjugates. This article emphasizes the recent advances in recyclable catalysts and protocols, and their merits for the synthesis of diverse multisubstituted imidazole conjugates by one-pot reaction approach and the catalyst and reactant interactions. Imidazole, a five-membered heterocycle having three carbon atoms, and two double bonds, having efficient antibacterial activities. To search of antibacterial drugs to overcome resistance of microorganisms to antibiotics, to date hundreds of this sort of derivatives have been synthesized and possess potent antibacterial activity.

References

  1. Zhu, X. W., Luo, D., Zhou, X. P., & Li, D. (2022). Imidazole-based metal-organic cages: Synthesis, structures, and functions. Coordination Chemistry Reviews, 455, 214354.
  2. Bodedla, G. B., Zhu, X., Zhou, Z., & Wong, W. Y. (2022). Small Molecules Containing Amphoteric Imidazole Motifs as Sensitizers for Dye-Sensitized Solar Cells: An Overview. Topics in Current Chemistry, 380(6), 49.
  3. Maleki, A., & Paydar, R. (2015). Graphene oxide–chitosan bionanocomposite: a highly efficient nanocatalyst for the one-pot three-component synthesis of trisubstituted imidazoles under solvent-free conditions. RSC advances, 5(42), 33177-33184.
  4. Gupta, R., Yadav, M., Gaur, R., Arora, G., Yadav, P., & Sharma, R. K. (2020). Magnetically supported ionic liquids: a sustainable catalytic route for organic transformations. Materials Horizons, 7(12), 3097-3130.
  5. Özil, M., Emirik, M., Beldüz, A., & Ülker, S. (2016). Molecular docking studies and synthesis of novel bisbenzimidazole derivatives as inhibitors of α-glucosidase. Bioorganic & Medicinal Chemistry, 24(21), 5103-5114.
  6. Man, L., Copley, R. C., & Handlon, A. L. (2019). Thermal and photochemical annulation of vinyl azides to 2-aminoimidazoles. Organic & Biomolecular Chemistry, 17(27), 6566-6569.
  7. Yang, D., Shan, L., Xu, Z. F., & Li, C. Y. (2018). Metal-free synthesis of imidazole by BF 3· Et 2 O promoted denitrogenative transannulation of N-sulfonyl-1, 2, 3-triazole. Organic & Biomolecular Chemistry, 16(9), 1461-1464.
  8. Sharma, P., LaRosa, C., Antwi, J., Govindarajan, R., & Werbovetz, K. A. (2021). Imidazoles as potential anticancer agents: An update on recent studies. Molecules, 26(14), 4213.
  9. Liu, L., Hu, Y., Lu, J., & Wang, G. (2019). An imidazole coumarin derivative enhances the antiviral response to spring viremia of carp virus infection in zebrafish. Virus Research, 263, 112-118.
  10. Khodja, I. A., Boulebd, H., Bensouici, C., & Belfaitah, A. (2020). Design, synthesis, biological evaluation, molecular docking, DFT calculations and in silico ADME analysis of (benz) imidazole-hydrazone derivatives as promising antioxidant, antifungal, and anti-acetylcholinesterase agents. Journal of Molecular Structure, 1218, 128527.
  11. Valls, A., Andreu, J. J., Falomir, E., Luis, S. V., Atrián-Blasco, E., Mitchell, S. G., & Altava, B. (2020). Imidazole and imidazolium antibacterial drugs derived from amino acids. Pharmaceuticals, 13(12), 482.
  12. Alghamdi, S. S., Suliman, R. S., Almutairi, K., Kahtani, K., & Aljatli, D. (2021). Imidazole as a promising medicinal scaffold: Current status and future direction. Drug Design, Development and Therapy, 3289-3312.
  13. Peng, X., Yang, L., Liu, Z., Lou, S., Mei, S., Li, M., ... & Zhang, H. (2022). Structural basis for recognition of antihistamine drug by human histamine receptor. Nature Communications, 13(1), 6105.
  14. Günsel, A., Taslimi, P., Atmaca, G. Y., Bilgicli, A. T., Pi?kin, H., Ceylan, Y., ... & Gülçin, ?. (2021). Novel potential metabolic enzymes inhibitor, photosensitizer and antibacterial agents based on water-soluble phthalocyanine bearing imidazole derivative. Journal of Molecular Structure, 1237, 130402.
  15. Adeyemi, O. S., Eseola, A. O., Plass, W., Atolani, O., Sugi, T., Han, Y., ... & Kayode, O. T. (2020). Imidazole derivatives as antiparasitic agents and use of molecular modeling to investigate the structure–activity relationship. Parasitology research, 119, 1925-1941.
  16. Ghosh, N., Chatterjee, S., Biswal, D., Pramanik, N. R., Chakrabarti, S., & Sil, P. C. (2022). Oxidative stress imposed in vivo anticancer therapeutic efficacy of novel imidazole-based oxidovanadium (IV) complex in solid tumor. Life Sciences, 301, 120606.
  17. Wang, C., Yu, Y., Su, Z., Li, X., & Cao, H. (2019). Metal-Free C–B Bond Cleavage: An Acid Catalyzed Three-Component Reaction Construction of Imidazole-Containing Triarylmethanes. Organic letters, 21(12), 4420-4423.
  18. Naureen, S., Chaudhry, F., Munawar, M. A., Ashraf, M., Hamid, S., & Khan, M. A. (2018). Biological evaluation of new imidazole derivatives tethered with indole moiety as potent α-glucosidase inhibitors. Bioorganic Chemistry, 76, 365-369.
  19. Alanthadka, A., Elango, S. D., Thangavel, P., Subbiah, N., Vellaisamy, S., & Chockalingam, U. M. (2019). Construction of substituted imidazoles from aryl methyl ketones and benzylamines via N-heterocyclic carbene-catalysis. Catalysis Communications, 125, 26-31.
  20. Roy, M. S., Meng, X., Koda, K., Rasapalli, S., Gout, D., & Lovely, C. J. (2019). Total synthesis of (−)-haploscleridamine. Tetrahedron Letters, 60(14), 979-982.
  21. Higuera, N. L., Peña-Solórzano, D., & Ochoa-Puentes, C. (2019). Urea–zinc chloride eutectic mixture-mediated one-pot synthesis of imidazoles: efficient and ecofriendly access to trifenagrel. Synlett, 30(02), 225-229.
  22. Arafa, W. A. A.,. (2019). An eco-compatible pathway to the synthesis of mono and bis-multisubstituted imidazoles over novel reusable ionic liquids: an efficient and green sonochemical process RSC Adv., 2018,8, 16392-16399.
  23. Kerru, N., Bhaskaruni, S. V., Gummidi, L., Maddila, S. N., Maddila, S., & Jonnalagadda, S. B. (2019). Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives. Synthetic Communications49(19), 2437-2459.
  24. Khan, K., & Siddiqui, Z. N. (2015). An efficient synthesis of tri-and tetrasubstituted imidazoles from benzils using functionalized chitosan as biodegradable solid acid catalyst. Industrial & Engineering Chemistry Research54(26), 6611-6618.
  25. Singh, H., & Rajput, J. K. (2018). Co (II) anchored glutaraldehyde crosslinked magnetic chitosan nanoparticles (MCS) for synthesis of 2, 4, 5?trisubstituted and 1, 2, 4, 5?tetrasubstituted imidazoles. Applied Organometallic Chemistry32(1), e3989.
  26. Zhang, H., Yan, T., Xu, S., Feng, S., Huang, D., Fujita, M., & Gao, X. D. (2017). Graphene oxide-chitosan nanocomposites for intracellular delivery of immunostimulatory CpG oligodeoxynucleotides. Materials Science and Engineering: C73, 144-151.
  27. Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in polymer science36(8), 981-1014.
  28. Kucukbay, H., Çetinkaya, E., & Durmaz, R. (1995). Synthesis and antimicrobial activity of substituted benzimidazole, benzothiazole and imidazole derivatives. Arzneimittel-forschung, 45(12), 1331-1334.)
  29. A.W.Bauer,D.M.Perry,and Kirby,“Single-Disk Antibiotic-Sensitivity Testing of Staphylococci: An Analysis of Technique and Results”,AMA Arch Intern Med.,104,No.2,208–216,1959.
  30. P. K.Sahu, P. K. Sahu, S. K., Gupta, & D. D.Agarwal,Chitosan: An efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Industrial & Engineering Chemistry Research,53,No.6,2085-2091,2014.
  31. Gurav, S. S., Jadhav, S. R., Raskar, S. V., Potdar, S. M., & Waghmode, K. T. (2023). 1, 2-Diaryl-4, 5-diphenyl-1 H-imidazoles: Further Preparative Studies Using Amberlite IR120 (H) as a Recyclable Heterogeneous Catalyst. Organic Preparations and Procedures International, 1-9.
  32. Anthony, L. A., Rajaraman, D., Shanmugam, M., & Krishnasamy, K. (2020). Synthesis, Spectral techniques, X-ray Crystal structure, DFT method, Hirshfeld surface analysis and Molecular docking studies of 1-(furan-2-yl) methyl)-4, 5-diphenyl-2-(p-tolyl)-1H-imidazole. Chemical Data Collections28, 100421.
  33. Anthony, L. A., Nethaji, P., Sundararajan, G., & Rajaraman, D. (2022). One-pot synthesis, Spectral, X-ray crystal structure, Hirshfeld surface and computational study on potential inhibitory action of novel 1-benzyl-2-(4-methoxynaphthalen-1-yl)-4, 5-diphenyl-1H-imidazole derivatives against COVID-19 main protease (Mpro: 6WCF/6Y84). Journal of Molecular Structure1250, 131892.
  34. Tiwari, S. V., Nikalje, A. P., Lokwani, D. K., Sarkate, A. P., & Jamir, K. (2018). Synthesis, biological evaluation, molecular docking study and acute oral toxicity study of coupled imidazole-pyrimidine derivatives. Letters in Drug Design & Discovery15(5), 475-487.

Downloads

Published

2024-01-01

Issue

Section

Research Articles

How to Cite

[1]
Ajay M. Patil, Dnyanoba Kasab, Mahananda Raut, Archana Kachare, " Synthesis and Antibacterial Activity of Some Imidazole-(1H) Derivatives, International Journal of Scientific Research in Chemistry(IJSRCH), ISSN : 2456-8457, Volume 9, Issue 1, pp.01-07, January-February-2024.