

Synthesis and Characterizations of N²,N⁴-bis(5-nitro-1,3-benzothiazol-2-yl)-N⁶-aryl-1,3,5-triazine-2,4,6-triamine,as Biological Agents J. S. Makwana, Dr. B.B.Baldaniya

Chemistry Department, M G Science Institute, Navarangpura, Ahmedabad, Gujarat, India

ABSTRACT

Some novel N^2 , N^4 -bis (5-nitro-1,3-benzothiazol-2-yl) - N^6 - aryl-1, 3, 5-triazine-2, 4, 6-triamine 1a-11 have been synthesized and characterized by elemental analyses IR and NMR spectra. The products tested for their antibacterial activity against gram (+)ve and gram (-)ve bacteria. Introduction of –OH, -NO₂, -Cl and –Br groups to the heterocyclic frame work enhanced antibacterial activities.

Keywords: 1, 3, 5-triazine-2, 4, 6-triamines; Antibacterial activity.

I. INTRODUCTION

Antibacterial and Antiviral diseases are very common in all over the world. The s-triazine based chalcones and their derivatives have been studied extensively because of their wide range of biological activity. The s-triazine¹⁻ ⁶ have been linked with a wide range of therapeutic activities⁷⁻¹² such as Antibacterial, Fungicidal, Anticancer, Antitubercular.

Among all heterocycles, nitrogen based heterocycles have specific and unique identity in the world. Pyrimidine, oxadiazole, coumarin, pyrimidine, s-triazine are some of the examples. The research work described here is humble effort to synthesis the nitrogen based novel heterocycles. And study of their pharmaceutical importance in medicinal chemistry.

The study of pyrazoline derivatives has been a developing field within the heterocyclic chemistrybroad spectrum of biological activity¹³⁻²⁰. Pyrazoline derivatives have been found to be bactericidal^{13,14}, fungicidal^{15,16}, and insecticidal agents^{17,18}. Asurveyof more recent literature reveals that some pyrazoline derivatives possess cerebroprotective properties¹⁹ and antidepressant activity^{20,21}.

It is our project to produce new bioactive molecules. Currently used antibacterial agents are not effective due to the resistance developed by the bacterial. And therefore, it is an ongoing effort to synthesize new antibacterial agents.

In view of these observations we have synthesized striazine, 4a-m (scheme-1, Table -1) by the condensation of triazine with different aromatic amines. 6-chloro-N,N'-bis (5-nitro-1,3-benzothiazol-2-yl)-1,3,5-triazine-2,4-diamineafforded the title compounds 1a-11 respectively (scheme -1) the series of compounds were characterization by IR and NMR analysis.

II. METHODS AND MATERIAL

Biological Activity

Antibacterial Activity: Antibacterial activity was carried out by broth dilution method. Antibacterial activity was carried out by broth dilution method²². Concentrations of 1000, 200, 100, 50, μ g/ml respectively (Table 2) of compound 1a-11.

Antifungal Activity: Same compounds were tested for antifungal activity against *C. Albicans A.Niger and A. Clavatus* at concentrations of 1000, 500, 200, and 100 and 50 μ g/ml respectively (Table 2) of compound 1a-11. The results are recorded in the form of primary and secondary screening. Each synthesized drug was diluted to obtain 1000 μ g/mL concentration, as a stock solution.

Experimental Section

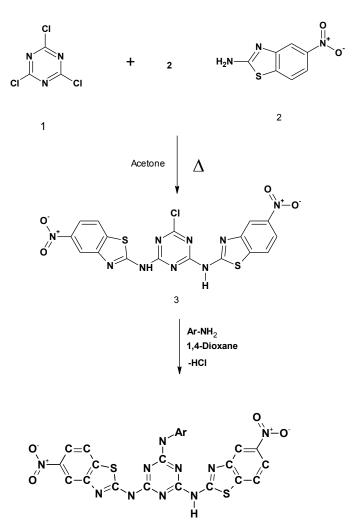
Melting points were taken in paraffin bath and are uncorrected. IR spectra were recorded on FTIR-BRUKER spectrometer (V_{max} in cm⁻¹); Purity was checked by TLC using TLC aluminum sheets silica gel 60, supplied by E.Merck. The spots were located by keeping the plates in iodine vapor. 5-nitro-1,3-benzothiazol was prepared by methods as described in contain²³⁻²⁵.

For 1a compound: IR (kbr): 3454 (-N-H str., sec.amine), 3083(-C-H str., aromatic), 1527 (> C = N- str., ter. Amine), 1350 (C-NO₂ STR.), 1122 (C-S-C str., thiazol), 952 (C-Cl str., aromatic), 808 (disubstituted aromatic), 1431 (C = N str., sec.amine).

NMR Spectra: 1H NMR spectra, were recorded in CDCl3 solution on a Bruker Avance DPX 200 MHz spectrometer Chemical shifts are reported as δ (ppm) relative to TMS as internal standard.10.08 δ (s, -NH, 2H), 9.29 δ (s, -NH, 1H), 9.44 δ (s, -NH, 2H), 6.54 δ (s, Ar-H, 8H).

<u>Preparation of 6-chloro-N, N'-bis (5-nitro-1,3-benzothiazol-2-yl)-1,3,5-triazine-2,4-diamine:</u>

In a conical flask, 1,3,5-triazine (1) (0.01 mol) was taken acetone (40 ml) and 5-nitro-1,3-benzothiazol-2amine (2) (0.02 mol) was added to it. To this mixture, 4% NaOH was added drop wise at room temperature. Stirred the solution for 5 h. The reaction mixture was pour onto crushed ice with constant stirring. And it was neutralized with dil. HCl. The solid was filtered and washed with water. The product was recrystallized from acetone. M.p. 196°c; yield 71.00%.


<u>Preparation of N²,N⁴-bis(5-nitro-1,3-benzothiazol-2-yl)-N⁶-aryl-1,3,5-triazine-2,4,6-triamine:</u>

In a round bottom flask, 6-chloro-N, N'-bis (5-nitro-1, 3-benzothiazol-2-yl)-1, 3, 5-triazine-2, 4-diamine. (3) (0.01 mol) and 1,4-dioxane (10 ml) was taken. To this mixture, aniline (0.01 mol) was added. The pHwas adjusted to neutral by adding 8% NaOHin it . The reaction mixture was refluxed for 2.5 h. And was poured onto crushed ice with constant stirring. The mixture was then neutralized with dil. HCl. The product was filtered

and washed with cold water. The product was dried and recrystallized from methanol. M.p. 286°c; Yield 69%.

III. RESULTS AND DISCUSSION

Scheme 1:

Figure 1. 1a-11 **Table 1 :** Physical constant of the compounds (1a-11):

Compd.	-Ar	Molecular	m.p.	Yield	C(%)		N(%)	
		Formula	(°C)	(%)	Found	Reqd.	Found	Reqd.
la	-C6H5	$C_{23}H_{14}N_{10}O_4S_2$	220	65	49.44	49.46	25.06	25.08
1b	-3-Cl-C ₆ H ₄	$C_{23}H_{13}ClN_{10}O_4S_2$	160	59	46.52	46.58	23.60	23.62
1c	-4-Cl-C ₆ H ₄	C23H13ClN10O4S2	226	54	46.54	46.58	23.59	23.62
1d	-3-NO2-C6H4	$C_{23}H_{13}N_{11}O_6S_2$	210	65	45.70	45.77	25.51	25.53
le	-4-NO2-C6H4	$C_{23}H_{13}N_{11}O_6S_2$	245	62	45.71	45.77	25.49	25.53
lf	-4-Br-C ₆ H ₄	$C_{23}H_{13}BrN_{10}O_4S_2$	170	57	43.30	43.34	21.95	21.97
lg	-4-F-C ₆ H ₄	$C_{23}H_{13}FN_{10}O_4S_2$	184	64	47.85	47.91	24.20	24.29
lh	-2-C5H4N2	$C_{22}H_{13}N_{11}O_4S_2$	196	65	47.19	47.22	27.50	27.54
li	-4-C5H4N2	$C_{22}H_{13}N_{11}O_4S_2$	223	68	47.20	47.22	27.49	27.54
lj	-N-CH ₃ -	$C_{24}H_{16}N_{10}O_4S_2$	290	59	50.30	50.34	24.40	24.46
	C_6H_4							
1k	-4-CH3-C6H4	$C_{24}H_{16}N_{10}O_4S_2$	288	56	50.29	50.34	24.41	24.46
11	-2-NO2-C6H4	$C_{23}H_{13}N_{11}O_6S_2$	256	55	45.74	45.77	25.50	25.53

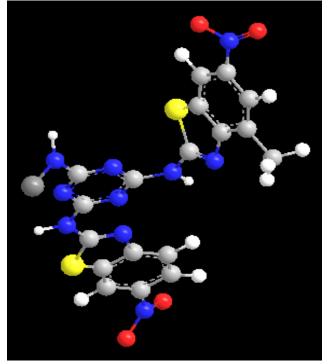


Figure 2. 3d-structure of : 1a

SR NO.	Minimal	bactericida	l concentra	Minimal fungicidal concentration				
	(MBC) ir	nµg∕ml		(MFC) in µg/ml				
	E. coli	P. aeru ginosa	S. aureus	S.pyogenus	C. albicans	A.nigar	A. clavatus	
	MTCC	MTCC	MTCC	MTCC	MTCC	MTCC	MTCC	
	- 443	-1688	-96	- 442	-227	-282	-1323	
1a	100	50	100	200	500	500	500	
1b	100	100	500	500	100	100	500	
1c	100	250	25	500	100	100	100	
1d	50	500	500	500	50	50	50	
1e	500	500	100	250	50	50	100	
lf	100	250	250	500	100	100	100	
lg	500	250	250	500	500	1000	1000	
1h	50	500	500	500	500	500	500	
li	50	500	1000	1000	50	50	50	
1j	100	500	100	100	200	200	200	
1k	250	250	100	250	50	100	100	
11	500	250	100	200	100	100	500	

Table 2 : Antibacterial and Antifungal Activities:

IV.CONCLUSION

In this work, a series of compounds comprising of Striazine based chalcone were successfully synthesized using this method. s-triazine provided a versatile synthetic approach for the synthesis of differently bioactive substituted triazine. The synthetic yields of the generated products are ranged from 50 to 70 % and their structures were established by spectral data (IR and NMR). Finally, all of synthesized compounds have been tested by elemental and spectral analysis.

V. ACKNOWLEDGEMENT

We are thankful to the principal of M. G. Science Institute, Ahmadabad to providing research facilities, IR data collection and North America Institute of Pharmaceutical Technology, Toronto for NMR data collection.

VI.REFERENCES

- [1] Serullas A; Ann. Chim Phys.; 38, 379, 1828.
- [2] Liebig J; Pogg. Ann. 15, 359 1829.
- [3] Modest E J; Elderfied R C; "Heterocyclic Compounds", Wiley, New York; 7, 1 1961.
- [4] Banks C. K., Gruhza O.M., Tillitson E.W., John controulis.; J Am Chem Soc; 66; 1771, 1944.
- [5] Zollinger H; Angew Chem; 73, 132, 1961.
- [6] Dudley J R; J Am Chem Soc, 73, 2990, 1951.
- [7] Dighade S R, Patil S D, Chincholkar M M & Dighade N R, Asian J Chem, 15(2), 1184, 2003.
- [8] Anjani Solankee & Indrajit Thakor, Ind J of Chem; 45B, 517, 2006.
- [9] Solanki A and Patel J; Ind J of Chem, Vol. 43B; pp.1580, 2004.
- [10] Desai K. R., Patel R.B., Desai P.S., Chikhalia K.H., J Ind Chem Soc.; Vol.80; Pp-138, 2003.
- [11] Curd F H S; J Chem Soc, 343, 1946.
- [12] Lanalia N A, Thaker K A; J Ind Chem Soc, 59(9),1099-1101, 1982.
- [13] Cetin, A. Cansiz, M. Digrak, Heteroatom Chem. 19 (4) 345–347, 2003.
- [14] L. Xu, Y. Huang, G. Yu, G. Si, Q. Zhu, J. Struct. Chem. 17 (2) 235–239, 2006.
- [15] M.S. Yar, A.A. Siddiqui, M.A. Ali, J. Serb. Chem. Soc. 72 (1) 5–11, 2007.
- [16] S. D'Andrea, Z.B. Zheng, K. Denbleyker, J.C. Fung-Tomc, H. Yang, J. Clark, D. Taylor, J. Bronson, Bioorg. Med. Chem. Lett. 15, 2834-2839, 2005.
- [17] S. Gafner, J.-L. Wolfender, S. Mavi, K. Hostettman, Planta Med. 62 (1) 67–69, 1996.
- [18] S.F. McCann, G.D. Annis, R. Shapiro, D.W. Piotrowski, G.P. Lahm, J.K. Long, K.C. Lee, M.M. Hughes, B.J. Myers, S.M. Griswold, B.M. Reeves, R.W. March, P.L. Sharp, P. Lowder, W.E. Barnette, K.D. Wing, Pest. Manag. Sci. 57,153– 164, 2001.

- [19] H. Kawazura, Y. Takahashi, Y. Shiga, F. Shimada, N. Ohto, A. Tamura, Jpn. J. Pharmacol. 73 (4) 317–324, 1997.
- [20] E. Palaska, M. Aytemir, I.T. Uzbay, D. Erol, Eur. J. Med. Chem. 36 (6) 539–543, 2001.
- [21] Y.R. Prasad, A.L. Rao, L. Prasoona, K. Murali, P.R. Kumar, Bioorg. Med. Chem. Lett. 15,5030– 5034,2005.
- [22] National Committee for Clinical Laboratory Standard. Reference method for broth dilution antifungal susceptibility testing of yeasts Approved standard M27A. 1997, NCCLS, Wayne, PA.
- [23] Organic synthesis; Collective vol.3; Noland, Wayland E., Editor in-chief; John Wiley & Sons. Inc. New York, 76, 1962.
- [24] Desai N C, Dipika Dave, Shah M.D.and Vyas G.D., Indian J Chem, 39B, 2000, 277.
- [25] Baldaniya B. B., Synthesis and Characterizations of N 2 -(Aryl)-N 4, N 6 -bis (6, 7-dichloro-1, 3-benzothiazol-2-yl)-1, 3, 5-triazine-2, 4, 6-triamines as Biological Potent Agents. E- Journal of Chemistry. 7(1), 210-214, 2010.
- [26] Baldaniya B. B. and Patel P K, Synthesis Antibacterial and Antifungal Activities of s-Triazine Derivatives. E- Journal of Chemistry. 6(3): 673-680, 2009.