

Synthesis, Antimicrobial Activity and Characterization of Some Novel Thiozolo Pyrimidine Derivatives

J. S. Makwana, B. B. Baldaniya*

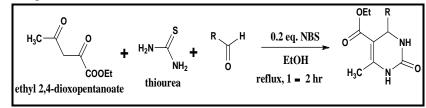
Chemistry Department, M G Science Institute, Navarangpura, Ahmedabad, Gujarat, India

ABSTRACT

Thirteen new thiozolo pyrimidine derivatives have been synthesized from Biginelli reaction. The structures of derivatives were established on the basis of their elemental analysis, IR, NMR and Mass Spectral data. The title compounds have been tested for antibacterial and antifungal activities against different strains of bacteria. **Keywords :** Thiozolo Pyrimidine, Antibacterial Activity, Antifungal Activities, Biginelli Reaction

I. INTRODUCTION

HETEROCYCLIC FIVE AND SIX MEMBERED COMPOUNDS


When nitrogen and oxygen can be included in the rings, they are called Heterocyclic compounds. The Hetero means that more than one kind of element is included within the ring and Cyclic indicates that there is at least one ring present in the compound. A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements, members of its rings. Heterocyclic chemistry is the branch of chemistry. It makes do synthesis, properties and applications of these heterocycles. Heterocyclic compounds may be inorganic or organic. Most contain at least one carbon in their structure. activities⁴⁻⁷. Imidazolinones have also been reported to possess fungicidal^{8,9}, herbicidal⁹, and vasodilator activities¹⁰.

Recently we have prepared pyrimidine derivatives and reported their antibacterial and antifungal activities¹¹⁻¹³. All role of heterocyclic compounds derivatives in certain biological importance prompted us to synthesize newly compounds for their antimicrobial activity.

Biginelli reaction:

Biginelli reaction is a three component reaction between an aldehyde, ß-ketoester and thiourea substances. It is a rapid and facile synthesis of dihydropyrimidones. In pharmaceutical it is very interesting compound.

Oxoimidazolines have been reported to exhibit antibacterial^{1,2}, antifungal³, and antimicrobial

This reaction was developed by Pietro Biginelli in 1891. The reaction can catalyze by acids. Several solid-phase protocols utilizing different linker attachments have been published.

USES:

- Substituted thioureas are useful in catalysis in organic synthesis that was called thiourea organocatalysis⁴⁷⁻⁵².
- Production of flame retardant resins and vulcanization accelerators produced in industrial by thiourea derivatives.
- Thiourea is used to tone silver-gelatin photographic prints, also used as an auxiliary agent in diazo paper, light-sensitive photocopy paper and all kind of copy paper.

Reaction procedure:

Reaction: 1

Preparation of ethyl 6-methyl-4-(3-nitrophenyl)-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate:

A mixture of Ethyl aceto acetate (0.01 mole), 3nitrobenzaldehyde (0.01 mole) and thiourea (0.01 mole) with ethanol (20 mL) in 250 mL RBF was refluxed for 6 h in concentrated catalic HCl (5 to 6 drop). The reaction mixture was poured in crushed ice and product was isolated and re-crystallized from ethanol: DMF. MP is 195° C, Yield 71 %.

Reaction: 2

Preparation of ethyl (2*Z*)-2-(benzylidene)-5-(3nitrophenyl)-7-methyl-3-oxo-2,3,8,8a-tetrahydro-5*H*-[1,3]thiozolo[3,2-*a*]pyrimidine-6-carboxylate: (NS1)

A mixture of ethyl 4-(3-nitrophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

(0.01 mole), benzaldehyde (0.01 mole), chloroaceticacid, sodium acetate (0.01 mole), acetic anhydride (0.01 mole) in acetic acid (20 mL) was refluxed for 5 to 6 hr. The reaction mixture was poured in crushed ice and product was isolated and

re-crystallized from ethanol: C₂₃H₂₁N₃O₅S, DMF MP 237°C Yield 58%.

Preparation of ethyl (2*Z*)-2-(4-methoxybenzylidine)-5-(3-nitrophenyl)-7-methyl-3-oxo-2,3,8,8atetrahydro-5*H*-[1,3]thiozolo[3,2-*a*]pyrimidine-6carboxylate: (NS2)

A mixture of ethyl 4-(3-nitrophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mole), 4-methoxybenzaldehyde (0.01 mole), chloroaceticacid, sodium acetate (0.01 mole), acetic anhydride (0.01 mole) in acetic acid (20 mL) was refluxed for 5 to 6 hr. The reaction mixture was poured in crushed ice and product was isolated and re-crystallized from ethanol: C₂₄H₂₃N₃O₆S, DMF MP 240°C Yield 59%.

Preparation of ethyl (2*Z*)-2-(2,4-dichlorobenzylidine)-5-(3-nitrophenyl)-7-methyl-3-oxo-2,3,8,8atetrahydro-5*H*-[1,3]thiozolo[3,2-*a*]pyrimidine-6carboxylate: (NS3)

A mixture of ethyl 4-(3-nitrophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mole), 2,4-dichlorobenzaldehyde (0.01 mole), chloroaceticacid, sodium acetate (0.01 mole), acetic anhydride (0.01 mole) in acetic acid (20 mL) was refluxed for 5 to 6 hr. The reaction mixture was poured in crushed ice and product was isolated and re-crystallized from ethanol: C₂₃H₁₉Cl₂N₃O₅S, DMF MP 170^oC Yield 54%.

Preparation of ethyl (2*Z*)-2-(4-methylbenzylidine)-5-(3-nitrophenyl)-7-methyl-3-oxo-2,3,8,8a-tetrahydro-5*H*-[1,3]thiozolo[3,2-*a*]pyrimidine-6-carboxylate: (NS4)

A mixture of ethyl 4-(3-nitrophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

(0.01 mole), 4-methylbenzaldehyde (0.01 mole), chloroaceticacid, sodium acetate (0.01 mole), acetic anhydride (0.01 mole) in acetic acid (20 mL) was refluxed for 5 to 6 hr. The reaction mixture was poured in crushed ice and product was isolated and

re-crystallized from ethanol: C₂₄H₂₃N₃O₅S, DMF MP 221°C Yield 53%.

Preparation of ethyl (2*Z*)-2-(4-fluorobenzylidine)-5-(3-nitrophenyl)-7-methyl-3-oxo-2,3,8,8a-tetrahydro-5*H*-[1,3]thiozolo[3,2-*a*]pyrimidine-6-carboxylate: (NS5)

A mixture of ethyl 4-(3-nitrophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mole), 4-fluorobenzaldehyde (0.01 mole), chloroaceticacid, sodium acetate (0.01 mole), acetic anhydride (0.01 mole) in acetic acid (20 mL) was refluxed for 5 to 6 hr. The reaction mixture was poured in crushed ice and product was isolated and re-crystallized from ethanol: C₂₃H₂₀FN₃O₅S, DMF MP 256°C Yield 65%.

Preparation of ethyl (2Z)-2-(4-bromobenzylidine)-5-(3-nitrophenyl)-7-methyl-3-oxo-2,3,8,8a-tetrahydro-5H-[1,3]thiozolo[3,2-a]pyrimidine-6-carboxylate: (NS6)

A mixture of ethyl 4-(3-nitrophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mole), 4-bromobenzaldehyde (0.01 mole), chloroaceticacid, sodium acetate (0.01 mole), acetic anhydride (0.01 mole) in acetic acid (20 mL) was refluxed for 5 to 6 hr. The reaction mixture was poured in crushed ice and product was isolated and re-crystallized from ethanol: C₂₃H₂₀BrN₃O₅S, DMF MP 260°C Yield 68%.

Preparation of ethyl (2*Z*)-2-(4-chlorobenzylidine)-5-(3-nitrophenyl)-7-methyl-3-oxo-2,3,8,8a-tetrahydro-5*H*-[1,3]thiozolo[3,2-*a*]pyrimidine-6-carboxylate: (NS7)

A mixture of ethyl 4-(3-nitrophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

(0.01 mole), 4-chlorobenzaldehyde (0.01 mole), chloroaceticacid, sodium acetate (0.01 mole), acetic anhydride (0.01 mole) in acetic acid (20 mL) was refluxed for 5 to 6 hr. The reaction mixture was poured in crushed ice and product was isolated and

re-crystallized from ethanol: C₂₃H₂₀ClN₃O₅S, DMF MP 276^oC Yield 61%.

Preparation of ethyl (2*Z*)-2-(3-hydroxybenzylidine)-5-(3-nitrophenyl)-7-methyl-3-oxo-2,3,8,8atetrahydro-5*H*-[1,3]thiozolo[3,2-*a*]pyrimidine-6carboxylate: (NS8)

A mixture of ethyl 4-(3-nitrophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mole), 3-hydroxybenzaldehyde (0.01 mole), chloroaceticacid, sodium acetate (0.01 mole), acetic anhydride (0.01 mole) in acetic acid (20 mL) was refluxed for 5 to 6 hr. The reaction mixture was poured in crushed ice and product was isolated and re-crystallized from ethanol: C₂₃H₂₁N₃O₆S, DMF MP 219°C Yield 54%.

Preparation of ethyl (2*Z*)-2-(4-hydroxybenzylidine)-5-(3-nitrophenyl)-7-methyl-3-oxo-2,3,8,8atetrahydro-5*H*-[1,3]thiozolo[3,2-*a*]pyrimidine-6carboxylate: (NS9)

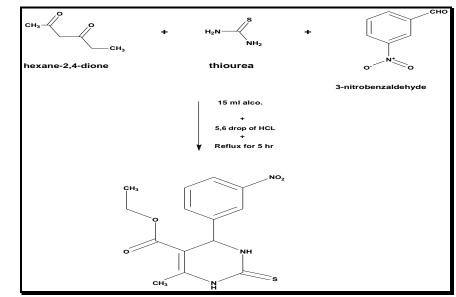
A mixture of ethyl 4-(3-nitrophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mole), 4-hydroxybenzaldehyde (0.01 mole), chloroaceticacid, sodium acetate (0.01 mole), acetic anhydride (0.01 mole) in acetic acid (20 mL) was refluxed for 5 to 6 hr. The reaction mixture was poured in crushed ice and product was isolated and re-crystallized from ethanol: C₂₃H₂₁N₃O₆S, DMF MP 265°C Yield 50%.

Preparation of ethyl (2*Z*)-2-(4-hydroxy-3methoxybenzylidine)-5-(3-nitrophenyl)-7-methyl-3oxo-2,3,8,8a-tetrahydro-5*H*-[1,3]thiozolo[3,2*a*]pyrimidine-6-carboxylate: (NS10)

A mixture of ethyl 4-(3-nitrophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mole), 4-hydroxy-3-methoxybenzaldehyde (0.01 mole), chloroaceticacid, sodium acetate (0.01 mole), acetic anhydride (0.01 mole) in acetic acid (20 mL) was refluxed for 5 to 6 hr. The reaction mixture was poured in crushed ice and product was isolated and re-crystallized from ethanol: $C_{24}H_{23}N_3O_7S$, DMF MP 248°C Yield 52%.

Preparation of ethyl (2*Z*)-2-(2-nitrobenzylidine)-5-(3nitrophenyl)-7-methyl-3-oxo-2,3,8,8a-tetrahydro-5*H*-[1,3]thiozolo[3,2-*a*]pyrimidine-6-carboxylate: (NS11)

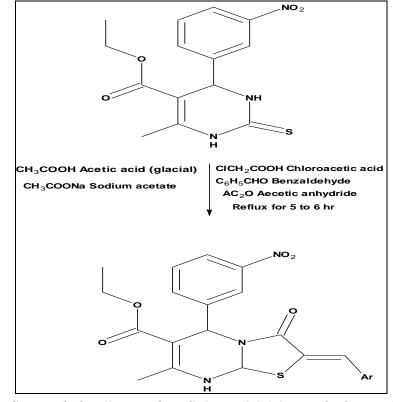
A mixture of ethyl 4-(3-nitrophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mole), 2-nitrobenzaldehyde (0.01 mole), acetic anhydride (0.01 mole) in acetic acid (20 mL) was refluxed for 5 to 6 hr. The reaction mixture was poured in crushed ice and product was isolated and re-crystallized from ethanol: C₂₃H₂₀N₄O₇S, DMF MP 244^oC Yield 65%.


Preparation of ethyl (2*Z*)-2-(3-nitrobenzylidine)-5-(3-nitrophenyl)-7-methyl-3-oxo-2,3,8,8a-tetrahydro-5*H*-[1,3]thiozolo[3,2-*a*]pyrimidine-6-carboxylate: (NS13)

A mixture of ethyl 4-(3-nitrophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mole), 3-nitrobenzaldehyde (0.01 mole), chloroaceticacid, sodium acetate (0.01 mole), acetic anhydride (0.01 mole) in acetic acid (20 mL) was refluxed for 5 to 6 hr. The reaction mixture was poured in crushed ice and product was isolated and re-crystallized from ethanol: $C_{23}H_{20}N_4O_7S$, DMF MP 255°C Yield 51%.

Preparation of ethyl (2*Z*)-2-(4-nitrobenzylidine)-5-(3nitrophenyl)-7-methyl-3-oxo-2,3,8,8a-tetrahydro-5*H*-[1,3]thiozolo[3,2-*a*]pyrimidine-6-carboxylate: (NS14) A mixture of ethyl 4-(3-nitrophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mole), 4-nitrobenzaldehyde (0.01 mole), chloroaceticacid, sodium acetate (0.01 mole), acetic anhydride (0.01 mole) in acetic acid (20 mL) was refluxed for 5 to 6 hr. The reaction mixture was poured in crushed ice and product was isolated and re-crystallized from ethanol: C₂₃H₂₀N₄O₇S, DMF MP 183^oC Yield 58%.

The progress and purity of the reaction and compounds were routinely checked on TLC aluminum sheet silica gel 60 F_{245} (E.Merck) using benzene-methanol (2.25:0.25 v/v) or benzene-Carbon tetrachloride–methanol (1.25:1.0:0.25 v/v) as irrigate and was developed in an iodine chamber. The purity of compounds was checked by taking its melting point by melting measurement. Their data was recorded and measure under antiinfective, antimicrobial drugs.


Reaction:

a) Preparation of ethyl 6-methyl-4-(3-nitrophenyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate:

ethyl 6-methyl-4-(3-nitrophenyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

b) Preparation of ethyl (2*Z*)-2-(Aryl)-7-methyl-5-(3-nitrophenyl)-3-oxo-2,3,8,8a-tetrahydro-5*H*-[1,3]thiazolo[3,2-*a*]pyrimidine-6-carboxylate:

ethyl (2*Z*)-2-(Aryl)-7-methyl-5-(3-nitrophenyl)-3-oxo-2,3,8,8a-tetrahydro-5*H*-[1,3]thiazolo[3,2*a*]pyrimidine-6-carboxylate Where Ar = Different aryl group

Physical Experimental data :

Physical constants of ethyl (2*Z*)-2-(Aryl)-7-methyl-5-(3-nitrophenyl)-3-oxo-2,3,8,8a-tetrahydro-5*H*-[1,3]thiazolo[3,2-*a*]pyrimidine-6-carboxylate:

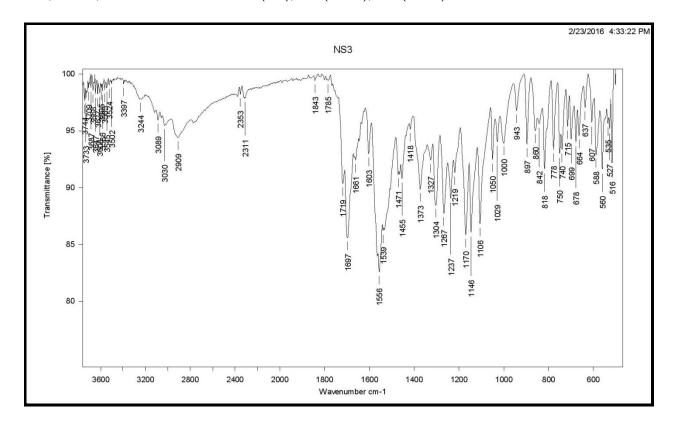
					Table 1					
Sr N o.	Cod e No	-Ar	MOLECUL AR FORMULA	MP °C	YIEL D (%)	CAF FO	OF BON UND QD.	NITR	OF OGEN JND QD.	MOLECUL AR WEIGHT
1	NS1	-C6H5	C23H21N3O5S	237ºC	58%	61.1 7	61.18	9.30	9.31	451.19
2	NS2	-4-OCH3- C6H4	C24H23N3O6S	240ºC	59%	59.8 5	59.86	8.71	8.73	481.52
3	NS3	-2,4-(CL)2- C6H3	C23H19Cl2N3 O5S	1 70 °C	54%	53.0 5	53.08	8.05	8.07	520.38
4	NS4	-4-CH3- C6H4	C24H23N3O5S	221ºC	53%	61.9 0	61.92	9.00	9.03	465.52

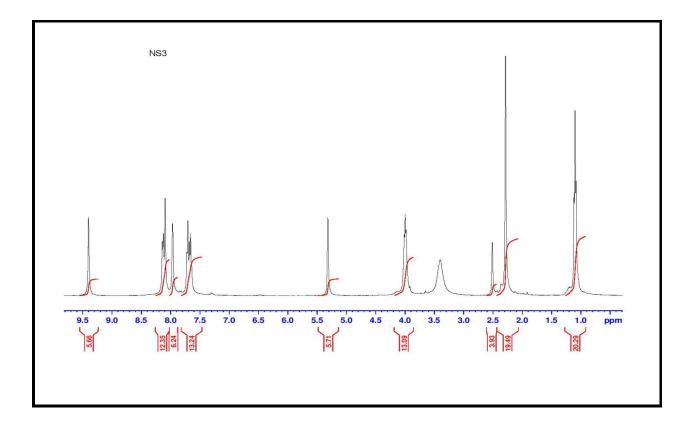
5	NS5	-4-F-C ₆ H ₄	C23H20FN3O 5S	256ºC	65%	58.8 1	58.84	8.92	8.95	469.48
6	NS6	-4-Br-C ₆ H ₄	C23H20BrN3 O5S	260ºC	68%	52.0 1	52.08	7.90	7.92	530.39
7	NS7	-4-Cl-C ₆ H ₄	C23H20ClN3 O5S	276ºC	61%	56.8 1	56.85	8.62	8.65	485.94
8	NS8	-3-OH- C6H4	C23H21N3O6S	219ºC	54%	59.0 2	59.09	8.90	8.99	467.49
9	NS9	-4-OH- C6H4	C23H21N3O6S	265ºC	50%	58.9 8	59.09	8.90	8.99	467.49
10	NS1 0	-3-OCH ₃ - 4-OH-C ₆ H ₃	C24H23N3O7S	248ºC	52%	57.9 2	57.94	8.40	8.45	497.52
11	NS1 1	-2-NO2- C6H4	C23H20N4O7S	244ºC	65%	55.6 1	55.64	11.25	11.28	496.49
12	NS1 3	-3-NO2- C6H4	C23H20N4O7S	255⁰C	51%	55.6 3	55.64	11.26	11.28	496.49
13	NS1 4	-4-NO2- C6H4	C23H20N4O7S	183ºC	58%	55.6 0	55.64	11.22	11.28	496.49

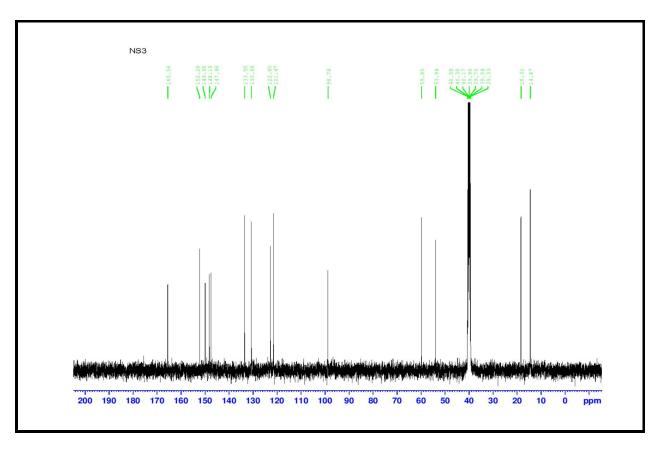
Antibacterial activity of ethyl (2*Z*)-2-(Aryl)-7-methyl-5-(3-nitrophenyl)-3-oxo-2,3,8,8a-tetrahydro-5*H*-[1,3]thiazolo[3,2-*a*]pyrimidine-6-carboxylate:

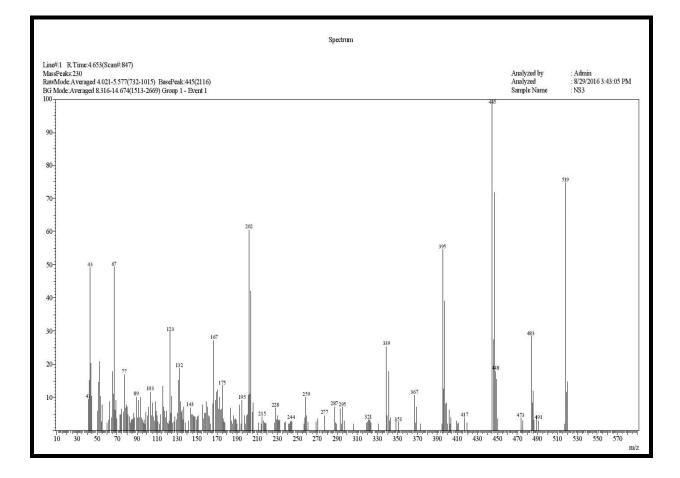
	Table 2									
	MINIMAL BACTERIAL CONCENTRATIONS									
	(MBC) in µg/mL									
Gram negative					Gram positive bacteria					
			bacteria							
			E.coli	P.aeru	S.aureus	S.pyogenus				
				ginosa						
			MTCC	MTCC	MTCC	MTCC				
Sr	Code	A	443	1688	96	442				
No.	No	-Ar		_						
1	NS1	-C6H5	250	50	500	500				
2	NS2	-4-OCH3-C6H4	200	250	200	200				
3	NS3	-2,4-(CL)2-C6H3	62.5	200	500	500				
4	NS4	-4-CH ₃ -C ₆ H ₄	200	250	205	250				
5	NS5	-4-F-C ₆ H ₄	100	200	250	250				
6	NS6	-4-Br-C ₆ H ₄	100	100	125	200				
7	NS7	-4-Cl-C ₆ H ₄	250	100	200	250				

8	NS8	-3-OH-C6H4	200	200	500	250
9	NS9	NS9 -4-OH-C6H4		50	500	500
10	NS10	NS10 -3-OCH ₃ -4-OH-C ₆ H ₃		62.5	250	250
11	NS11	-2-NO2-C6H4	200	200	250	50
12	NS13	-3-NO2-C6H4	125	200	62.5	100
13	NS14	-4-NO2-C6H4	250	250	62.5	200
14		Gentamycin	0.05	1	0.25	0.5
15		Ampicillin	100		250	100
16	C	Chloramphenicol	50	50	50	50
17		Ciprofloxacin	25	25	50	50
18		Norfloxacin	10	10	10	10


Antifungal activity of ethyl (2*Z*)-2-(Aryl)-7-methyl-5-(3-nitrophenyl)-3-oxo-2,3,8,8a-tetrahydro-5*H*-[1,3]thiazolo[3,2-*a*]pyrimidine-6-carboxylate:


	Table 3								
	MINIMAL FUNGICIDAL CONCENTRATIONS								
	(MFC) in µg/mL								
			Fungus						
			C.albicans	A.nigar	A.clavatus				
Sr No.	Code No	-Ar	MTCC	MTCC	MTCC				
			227	282	1323				
1	NS1	-C6H5	125	100	125				
2	NS2	-4-OCH3-C6H4	50	100	100				
3	NS3	-2,4-(CL)2-C6H3	500	125	50				
4	NS4	-4-CH3-C6H4	500	>1000	>1000				
5	NS5	-4-F-C6H4	100	500	500				
6	NS6	-4-Br-C6H4	1000	>1000	>1000				
7	NS7	-4-Cl-C6H4	1000	500	500				
8	NS8	-3-OH-C6H4	100	1000	100				
9	NS9	-4-OH-C6H4	1000	200	200				
10	NS10	-3-OCH ₃ -4-OH-C ₆ H ₃	200	100	125				
11	NS11	-2-NO2-C6H4	100	200	50				
12	NS13	-3-NO2-C6H4	1000	100	100				
13	NS14	-4-NO2-C6H4	100	125	1000				
14		Nystatin	100	100	100				
15	(Greseofulvin	500	100	100				


Characterization of ethyl (2*Z*)-2-(2,4-dichlorobenzylidine)-5-(3-nitrophenyl)-7-methyl-3-oxo-2,3,8,8a-tetrahydro-5*H*-[1,3]thiozolo[3,2-*a*]pyrimidine-6-carboxylate: (NS3)


This compound was obtained as a solid.

IR (KBr): vmax (cm–1), 3397 (N-H), 2909 (C-H), 2311 (N-C-S), 1719 (C=O ester), 1697 (cyclic C=O), 1539 (C=N and aromatic C=C), 1146 (C-O), 1556, 1373 (N-O), 778, 750 (C-Cl), 678 (aromatic). 1H-NMR (400 MHz, DMSO-d6): δ ppm, 1.0 (3H, t, ethyl CH3), 1.90 (3H, s, C6-CH3), 2.51 (2H, q, OCH2), 3.50 (1H, s), 3.70 (1H, s), 4.20 (s br, 1H, NH, D2O exchangeable), 7.49-8.40 (7H, overlapping signals of Ar-H), 9.71 (1H, s, NH). 13C-NMR (100 MHz, DMSO-*d*6): δ ppm, 14.47, 18.32, 39.46, 40.58, 59.85, 98.78, 121.47, 122.80, 133.50, 147.46, 165.54. LCMS: *m/z* = 520 (M+), 522 (M++2), 524 (M++4).

II. ACKNOWLEDGEMENT

We are thankful to our principal of M. G. Science Institute, Ahmedabad and the Ahmadabad Education Society for facilitating us a well-equipped research laboratory and library. We are also thankful to the North America Institute of Pharmaceutical Technology, Toronto for NMR data collection and Microcare laboratory & tuberculosis research centre, Surat for biological activity. For Mass data collection we are thankful to Saurastra University, Rajkot.

III. REFERENCES

- V. Tomar, G. Bhattacharjee, Kamaluddina, A. Kumar, Synthesis and antimicrobial evolution of new Chalcones containing piperazine or 2,5-dichlorothiophene moiety. Bioorg Med Chem Lett. 2007; 17, 5321-4.
- [2]. Y. R. Prasad, P. R. Kumar, J. Smiles, P. A. Babu, QSAR studies on chalcone derivatives as

antibacterial agents against Bacillus Pumilis, Arkivic. 2008; 11, 266-76.

- [3]. J. N. Dominguez, C. Leon, J. Rodrigues, N. G. Dominguez, J. Gut, P. J. Rosenthal, synthesis and antimalarial activity of sulfonamide chalcone derivatives, Farmaco. 2005; 60, 307-11.
- [4]. B. B. Baldaniya, M. M. Jotani, (2Z)-Ethyl2-(3-methoxy-4-acetyloxybenzylidene)-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-1, 3 thiazolo-[3, 2-a]pyrimidine-6-carboxylate. Indian J. Phys, 2010, 84 (9) 1177-1182.
- [5]. R. Kalirajan, S. U. Sivakumar, S. Jubie, B. Gowramma, B. Suresh, synthesis and biological evaluation of some heterocyclic derivatives of Chalcones., int J Chem Res., 2009, 1, 27-34.
- [6]. B. B. Baldaniya, N.C. Desai., M.T.Chhabaria., Amit Dodia and Ajit M. Bhavsar, Synthesis characterization, anticancer activity and QSARstudies of some new tetrahydropyrimidines, European journal medicinal chemistry, Med.Che.Res, (2011) 20:1331–1339, medicinal

chemistry research, DOI: 10.1007/s00044-010-9481-4.

- [7]. V. R. Gadhachanda, B. Wu, Z. Wang, K. L. Kuhen, J. Caldwell, H. Zondler, et al., 4-aminopyrimidines as novel HIV-1 inhibitors., Bioorg Med Chem Lett., 2007, 17, 260-5.
- [8]. A. Agarwal, K. Srivastava, S. K. Puri, PMS Chauhana, antimalarial activity and synthesis of new trisubstituted pyrimidines., Bioorg Med Chem Lett., 2005; 15, 3130-2.
- [9]. M. T. Chhabria, H. G. Bhatt, H. G. Raval, P. M. Oza, synthesis and biological evaluation of some 5-ethoxycarbonyl-6-isopropylamino-4-(substitutedphenyl)aminopyrimidines as potent analgesic and anti-inflammatory agents., Bioorg Med Chem Lett., 2007, 17, 1022-4.
- [10]. B. B. Baldaniya, M. M. Jotani., Ethyl (2Z) 2-(2-chlorobenzylidene)-7 methyl-3-oxo-5-phenyl-2,3-dihydro-5H-1,3-thiazolo [3,2-a] pyrimidine-6-carboxylate. Acta Cryst., 2007, E-63, o1937-o1939, ISSN 1600-5368.
- [11]. N. V. Desai, A. M. Bhavsar, B. B. Baldaniya, synthesis and antimicrobial activity of 5imidazolinone derivatives, Indian J Pharm Sci. 2009, 71, 90-4.
- [12]. A. Solankee, S. Solankee, G. Patel., potential antibacterial agents; 5-imidazolones derivatives., Rasayan J Chem., 2008, 1, 228-31.
- [13]. T El-Sayed Ali, S Abdel-Aghfaar Abdel-Aziz, H Metwali El-Shaaer, F Ismail Hanafy, A Zaky El-Fauomy., synthesis of some new 4-oxo-4Hchromene derivatives Bearing Nitrogen Heterocyclic synthesis as antifungal agents., Turk J Chem., 2008, 32, 365-74.