

Synthesis and Characterizations of Some New 1,3,5-triazine-2,4,6-Triamine based Derivatives as Potent Antimicrobial and Antiinfective Agents

S. N. Chadotra, B. B. Baldaniya

Department of Chemistry, M. G. Science institute, Navarangpura, Ahmedabad, Gujarat, India

ABSTRACT

1,2,4-Triazines are the six membered heterocyclic compounds containing three nitrogen in its structure with general formula C₃H₃N₃ .Some novel 1,3,5-triazine-2,4,6-triamine have been synthesized and characterized by elemental analyses. Introduction of -OCH₃, -F, -NO₂, -Cl and –Br groups to the heterocyclic frame work enhanced antibacterial and antifungal activities. The products have been tested for their antibacterial activity against gram (+)ve(POSITIVE) and gram (-)ve(NEGATIVE) bacteria and also on different strains of fungi. **Keywords:** 1, 3, 5-triazine-2, 4, 6-triamines, Antibacterial activity, Antifungal activity.

I. INTRODUCTION

Medicinal chemistry is an area that applies the basic structural information of chemistry and biology to the advanced knowledge, leading to the introduction of new bioactive agents. Hence, the medicinal chemist must have a basic background in the biological sciences, especially biochemistry and pharmacology that apply in new formation of derivatives. Due to binding ability to various enzymes and wide variety of applications, s-triazine become the keystone of organic chemistry in pharmaceutical field.

This section describes the biological importance of various s-triazine derivatives. The recent literature also supports the immense application of following heterocyclic core in terms of anti-microbial, antimalarial, anti-infective etc. 1,2,4-Triazines and their derivatives have been widely studied in terms of their synthetic methodologies and reactivity since some of these derivatives were reported to have promising biological activities. s-triazine and its moiety are widely used within the pharmaceutical, plastic, rubber industries, chemical factories, dyestuffs, optical bleaches, surface active agents. Currently to fight against drug resistance problems and to alleviate opportunistic microbial infections, many researchers have reported heterocycles molecules exhibiting excellent biological activity including anti-infective, antimicrobial, anticancer etc.

In recent decades, problems of multi-drug resistantmicroorganisms have reached on alarming level in many countries around the world. A numbersof recent clinical reports describe the increasingccurrence of meticillin-resistant S. aureus and other antibiotic-resistant human pathogenic microorganisms in United State, European countries and other developing countries. Infections caused by those microorganisms pose a serious challenge to the medical community and the need for an effective therapy has led to а search for novel antimicrobialagentsand antifungleagents¹. In this work, we report the synthesis and biological activity of some newly synthesized cyanuric chloride based derivatives. Several derivatives of s-triazine show antimicrobial², antibacterial³, and herbicidal activities⁴. They are also used for the treatmentof HIV infection⁵⁻⁶. Cyanuric chloride derivatives are widely used in commercial chemicals. Some trisubstituted-1,3,5-triazines are also used as liposome⁷.

Several investigators found s-triazine nucleus as potential therapeutic agents for diseases due to bacteria, malaria and cancer⁸. Trichlorotriazine derivatives have found extensive use in the synthesis of "activated"dyes. 1,3,5-Triazine derivatives also possess biological activities like antitubercular,antitumor⁹, anti-inflammatory¹⁰. 1,3,5-triazines represent a widely used lead structure with multitude of interesting applications in numerous field¹¹. Cyanuric chloride is a heterocyclic organic compound commonly used for immobilization of proteins¹²⁻¹⁴.

It has been reported that s-triazine derivatives are used as templates for molecular imprinting and for the construction of three-helix bundle protein¹⁵. Cyanuric chloride is an essential organic intermediate of which three chlorines can be replaced by –NH2, – OH, –SH or –NHR step by step with high yield. Cyanuric chloride derivatives have been studied for decades, especially its amino derivatives, which depends on the activity of amine nucleophiles¹⁶. Thiourea and Urea derivatives possess antibacterial¹⁷ and antifungal activity. It is also lead a human immuno deficiency virus type (HIV-1)¹⁸, and found as antagonist¹⁹⁻²⁰.

Over the last few years, the thiourea moiety has been of interest to design molecules as receptor antagonists, as natural product mimics or as synthetic intermediates to amidinesorguanidines²¹. Thiourea not only confers antibacterial, antitubercular or antileprotic activity also urea confers antibacterial and antifungle activity, antibacterial, anticancer, anticonvulsant, antithyroidal, antibacterial²²⁻²⁸, diuretic²⁹ and insecticidal activity³⁰.

We are going to make some new kind of synthesis and characterization of some triazine based cyanuric derivatives carrying the above biodynamic heterocyclic systems with the hope to achieve enhanced biological activity³¹⁻³².

II. METHODS AND MATERIAL

Biological activity:

Antibacterial activity: Antibacterial activity was carried out by broth dilution method¹⁷. The strains used for the activity were secured from Institute of Microbial Technology. The compounds 1a-11 were observed for their antibacterial activity against *E. coli, S. aureus, E. pyogenes and P. aeruginosa*, at concentrations of 1000, 500, 200, 100, 50, 25, 12.5 µg/mL respectively (Table 2).

Antifungal activity: Same compounds were tested for antifungal activity against *C. Albicans A. Niger and A. Clavatus* at a concentrations of 1000, 500, 200, 100 and 50 μg/ml respectively (Table 2).

The result of this test is affected by the size of the inoculums. The test mixture should contain 10^8 organisms/ml. "K. *Nystatin*" was used as the standard drug for antifungal activity which showed 100μ g/ml MFC against fungi, used for the antifungal activity³².

III. RESULTS AND DISCUSSION

Experimental section:

Melting points were taken in open capillaries using paraffin bath. IR spectra were recorded on FTIR-BRUKER ALPHA-E (10044239) spectrometer (V_{max} in cm⁻¹); Purity was checked by TLC using TLC aluminum sheets silica gel 60, supplied by E.Merck. The spots were located by keeping the plates in iodine vapor.

NMR Spectra: 1H NMR spectra, were recorded inC. CDCl3 solution on a Bruker Avance DPX 200 MHz spectrometer Chemical shifts are reported as δ (ppm) relative to TMS as internal standard.

13C-NMR (100 MHz, DMSO-*d*6): δ ppm.

Experimental:

Preparation:

A. Preparation of 6-methyl-1,3-benzothiazol-2amine:

A 250 ml conical flask was filled with a mixture of 5 gm 4-methyl aniline and 9 gm KSCN (potassium thiocyanate). Then add 20 ml glacial acetic acid in this mixture with constant stirring. Take 3.6 ml Br2 in separating funnel contain 5 ml glacial acetic acid in it. Poured this solution drop by drop in conical flask with constant stirring. The solution was stirred for 6 to 8 hour. The reaction mixture was poured into crushed ice with constant stirring and neutralized with dil. NaOH. The solid was filtered and washed with water. The product was recrystallized from alcohol. Which is benzothiazol. The yield was 70 % with m.p 165-170^o C.

B. Preparation of 6-chloro-N²,N⁴-bis(6-methyl-1,3benzothiazol-2-yl)-1,3,5-triazine-2,4-diamine:

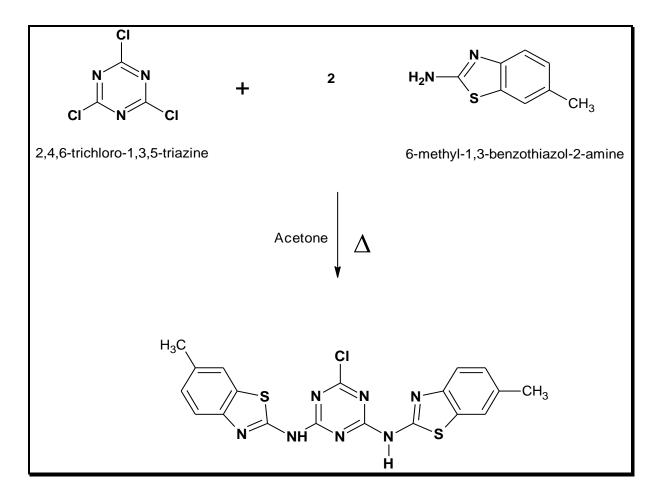
A 250 ml conical flask was filled with a mixture of 5 gm (1 mol) 2,4,6-trichloro-1,3,5,-triazine, 40 ml acetone and 8.91 gm (2 mole) of 6-methyl-1,3-benzothiazol-2-amine (benzothiazol). To this mixture 4 % NaOH was added drop wise to neutralize solution. The solution was stirred for 4 to 5 hour. The reaction mixture was poured into cold water with constant stirring. The solution was neutralized by dil. HCl adding slowly drop by drop. The precipitate was filtered and washed with cold distilled water. The

compound was recrystallized from acetone. The yield was 69 % with m.p 210-218^o C.

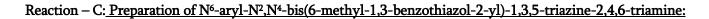
Preparation of N⁶-aryl-N²,N⁴-bis(6-methyl-1,3benzothiazol-2-yl)-1,3,5-triazine-2,4,6-triamine:

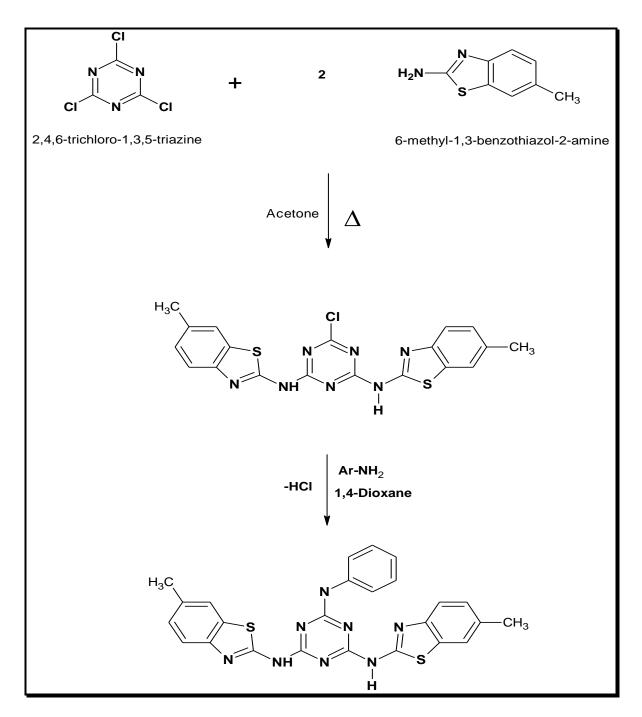

A 250 ml RBF was filled with a mixture of 0.01 mol 6chloro-N²,N⁴-bis(6-methyl-1,3-benzothiazol-2-yl)-1,3,5-triazine-2,4-diamine (1 gm), 10 ml 1,4-dioxane and 0.01 mol substituted aniline. The solution was neutralized by dil. 8% NaOH drop by drop to adjust pH. The reaction mixture was refluxed for 2.5 to 3 hour not more than 70° C. The reaction mixture was poured into cold water with constant stirring and neutralized with dil. HCl. The product was filtered and washed with cold distilled water. The compound was dried and recrystallized from methanol. DMF m.p 275° C, Yield 65 %.

The purity of compounds was routinely checked on TLC aluminum sheet silica gel 60 F_{245} (E. Merck) using benzene-methanol (4.5:0.5 v/v) or benzeneccl4-methanol (2.5:2.0:0.5 v/v) as irrigate and was developed in an iodine chamber.


Other derivative compounds of the series were prepared by using similar method. The purity of these derivatives were analyzed through melting point measurements. In view of tremendous application of these compounds, we have prepared a library of molecules. We have undertaken to investigate the role of functional groups on molecular geometry, conformation and generation of supramolecular assemblies in the solid state. Furthermore the synthesized derivatives have also been evaluated for their antibacterial, antiinfective activity by Broth Dilution method.

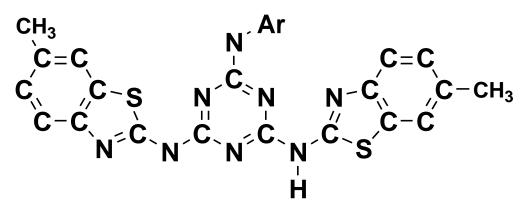
Reaction work:


Reaction – A: Preparation of 6-methyl-1,3benzothiazol-2-amine:

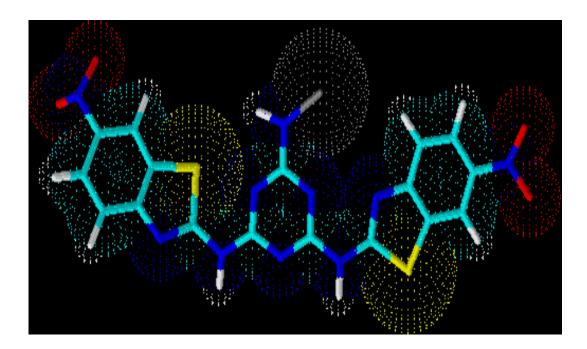


Reaction – B: Preparation of 6-chloro-N²,N⁴-bis(6-methyl-1,3-benzothiazol-2-yl)-1,3,5-triazine-2,4-diamine:

6-chloro-N²,N⁴-bis(6-methyl-1,3-benzothiazol-2-yl)-1,3,5-triazine-2,4-diamine



 $N^6-phenyl-N^2, N^4-bis (6-methyl-1, 3-benzothiazol-2-yl)-1, 3, 5-triazine-2, 4, 6-triamine-2, 6$


Physical Experimental data:

 $\underline{Table \ 1}: Physical \ constants \ of \ N^6-aryl-N^2, N^4-bis (6-methyl-1, 3-benzothiazol-2-yl)-1, 3, 5-triazine-2, 4, 6-triamine:$

Where Ar = Different aryl group

Sr No.	Code No	-Ar	MOLECULAR FORMULA	M. P. °C	YIELD (%)	% OF CARBON		% OF NITROGEN		MOLECULAR WEIGHT
						FOUND	REQD.	FOUND	REQD.	
1	4CH1	-C6H5	C25H20N8S2	275 ^o C	56	60.42	60.46	22.51	22.56	496.60
2	4CH2	-3-Cl-C6H4	C25H19ClN8S2	286- 290 ⁰ C	58	56.52	56.54	21.08	21.10	531.05
3	4CH3	-4-Cl-C6H4	C25H19ClN8S2	200- 202 ^o C	54	56.51	56.54	21.05	21.10	531.05
4	4CH4	-3-NO2- C6H4	C25H19N9O2S2	288- 290 ⁰ C	57	55.40	55.44	23.25	23.28	541.60
5	4CH5	-4-NO2- C6H4	C25H19N9O2S2	292- 293 ^о С	59	55.39	55.44	23.24	23.28	541.60
6	4CH6	-4-Br- C6H4	C25H19BrN8S2	285°C	51	52.15	52.17	19.45	19.47	575.50
7	4CH7	-4-F-C6H4	C25H19FN8S2	248- 250 ⁰ C	62	58.30	58.35	21.74	21.77	514.60
8	4CH8	-2-C5H4N	C22H19N9S2	236- 240 ⁰ C	54	57.90	57.93	25.30	25.33	497.59
9	4CH9	-4-C5H4N	C22H19N9S2	274- 276 ⁰ C	62	57.89	57.93	25.29	25.33	497.59
10	4CH10	-N-CH3- C6H4	C26H22N8S2	251- 256 ⁰ C	61	61.12	61.15	21.90	21.94	510.63
11	4CH11	-4-CH3- C6H4	C26H22N8S2	259- 262 ⁰ C	54	61.10	61.15	21.89	21.94	510.63
12	4CH12	-2-NO2- C6H4	C25H19N9O2S2	269- 272 ⁰ C	59	55.40	55.44	23.21	23.28	541.60
13	4CH13	-3-OH- C6H4	C25H20N8OS2	278- 280 ⁰ C	58	58.55	58.58	21.85	21.86	512.60
14	4CH14	-4-OCH3- C6H4	C26H22N8OS2	281- 283 ^o C	57	59.26	59.30	21.22	21.28	526.63

Table 2: Antibacterial activity of N6-aryl-N2,N4-bis(6-methyl-1,3-benzothiazol-2-yl)-1,3,5-triazine-2,4,6-triamine:

MINIMAL BACTERIAL CONCENTRATIONS							
(MBC) in µg/ml							
			Gram nega	tive bacteria	Gram positive bacteria		
			E.coli	P.aeruginosa	S.aureus	S.pyogenus	
Sr	Code		MTCC	MTCC	MTCC	MTCC	
No.	No	-Ar	443	1688	96	442	
1	4CH1	-C6H5	125	250	250	250	
2	4CH2	-3-Cl-C ₆ H ₄	200	200	200	200	
3	4CH3	-4-Cl-C ₆ H ₄	100	62.5	100	125	
4	4CH4	-3-NO ₂ -C ₆ H ₄	250	100	62.5	125	
5	4CH5	-4-NO ₂ -C ₆ H ₄	100	100	125	100	
6	4CH6	-4-Br-C ₆ H ₄	100	100	100	100	
7	4CH7	-4-F-C6H4	100	125	125	250	
8	4CH8	-2-C5H4N	100	62.5	125	100	
9	4CH9	-4-C5H4N	250	125	62.5	250	
10	4CH10	-N-CH ₃ -C ₆ H ₄	200	62.5	125	100	
11	4CH11	-4-CH3-C6H4	62.5	125	100	100	
12	4CH12	-2-NO ₂ -C ₆ H ₄	200	125	62.5	200	
13	4CH13	-3-OH-C ₆ H ₄	200	200	100	250	
14	4CH14	-4-OCH ₃ -C ₆ H ₄	100	100	200	250	
15	Gentamycin		0.05	1	0.25	0.5	
16	A	mpicillin	100		250	100	

17	Chloramphenicol	50	50	50	50
18	Ciprofloxacin	25	25	50	50
19	Norfloxacin	10	10	10	10

 $\textbf{Table 3:} Antifungal activity of N^6-aryl-N^2, N^4-bis (6-methyl-1, 3-benzothiazol-2-yl)-1, 3, 5-triazine-2, 4, 6-triamine-2, 7-triamine-2, 7-t$

MINIMAL FUNGICIDAL CONCENTRATIONS							
(MFC) in µg/ml							
			Fungus				
			C.albicans	A.nigar	A.clavatus		
Sr	Code		MTCC	MTCC	MTCC		
No.	No	-Ar	227	282	1323		
1	4CH1	-C6H5	500	500	500		
2	4CH2	-3-Cl-C ₆ H ₄	>1000	>1000	>1000		
3	4CH3	-4-Cl-C ₆ H ₄	200	250	250		
4	4CH4	-3-NO ₂ -C ₆ H ₄	>1000	>1000	>1000		
5	4CH5	-4-NO ₂ -C ₆ H ₄	500	250	200		
6	4CH6	$-4-Br-C_6H_4$	>1000	>1000	>1000		
7	4CH7	-4-F-C ₆ H ₄	62.5	>1000	>1000		
8	4CH8	-2-C5H4N	500	100	50		
9	4CH9	-4-C5H4N	100	62.5	>1000		
10	4CH10	-N-CH3-C6H4	125	62.5	200		
11	4CH11	-4-CH3-C6H4	125	50	250		
12	4CH12	-2-NO ₂ -C ₆ H ₄	62.5	250	200		
13	4CH13	-3-OH-C ₆ H ₄	125	50	100		
14	4CH14	-4-OCH ₃ -C ₆ H ₄	62.5	50	125		
15	N	ystatin	100	100	100		
16	Greseofulvin		500	100	100		

IV.CONCLUSION

In this work, a series of compounds comprising of s-triazine based chalcones were successfully synthesized using this method. s-triazine provided a versatile synthetic approach for the synthesis of differently bioactive substituted triazine. The synthetic yields of the generated products ranged from 55 to 70 % and their structures were established by spectral data (IR and NMR). Finally, all of synthesized compounds have been tested by elemental and spectral analysis.

 This section is benzothiazol 6-methyl-1,3benzothiazol-2-yl triazine derivatives compounds. Out of them -4-Cl-C₆H₄, -3-NO₂-C₆H₄, -2-C₅H₄N, -4-C₅H₄N, -N-CH₃-C₆H₄, -4-CH₃-C₆H₄, -2-NO₂-C₆H₄ were very excellent active against *E.coli*, *P.aeruginosa*, *S.aureus* and *S.pyogenus* bacteria. -4-Cl-C₆H₄, -3-NO₂-C₆H₄, -4-NO₂-C₆H₄, -4-Br-C₆H₄, -4-F-C₆H₄, -2-C₅H₄N, -N-CH₃-C₆H₄, -4-CH₃-C₆H₄, -3-OH-C₆H₄, -4-OCH₃-C₆H₄ were good active against gram positive and negative bacteria.

Antifungal activity results showed that compounds -4-F-C₆H₄, -2-NO₂-C₆H₄ and -4-OCH₃-C₆H₄ showed lofty activity against *C.albicans.* -4-C₅H₄N, -N-CH₃-C₆H₄, -4-CH₃-C₆H₄, -3-OH-C₆H₄ and -4-OCH₃-C₆H₄ showed lofty activity against *A.nigar.* -2-C₅H₄N showed lofty activity against *A.clavatus.* -C₆H₅, -4-NO₂-C₆H₄ and -2-C₅H₄N showed mean activity against *C.albicans, A.nigar* and *A.clavatus.*

Acknowledgement

We are thankful to our principal of M. G. Science Institute, Ahmedabad and the Ahmadabad Education Society for facilitating us a well-equipped research laboratory and library. We are also thankful to the North America Institute of Pharmaceutical Technology, Toronto for NMR data collection and Microcare laboratory & tuberculosis research centre, Surat for biological activity. For Mass data collection we are thankful to Saurastra University, Rajkot.

V. REFERENCES

- Mayank j patel ,Kishor H.Chikhalia Arkivoc 2008(xiii) 189-197.
- [2]. Desai P. S. and Desai K. R., J. Ind. Chem. Soc., 1994, 77, 155.
- [3]. Gajare A. S. and Shingare M. S., Ind. J. Chem., 1998, 37B, 510.

- [4]. Nishimura N. and Kato A., Carbohyd. Res., 2001, 331, 77.
- [5]. Kukla M. J. and Janssen P. A. J., Eur. Pat., 1999, 447, 945.
- [6]. Barkhard K. and Gilbert I. H.,J. Med. Chem., 2001, 44, 3440.
- [7]. G. Candiani, M. Frigerio, F. Viani, C. Verpelli, C. Salay, L. Chiamenti, N. Zaffaroni,
- [8]. M.Folini,M.Sani,W.Panzeri, M. Zanda, Dimerizable Chem. Med. Chem. 2, 2007, 292-296
- [9]. Lino Y. and Morishita Y., Anticancer Res., 1998, 18, 171.
- [10]. Brozowski Z. and Gdaniec M.,Eur. J. Med. Chem. 2000, 1053, 35.
- [11]. Anjaneyulla A.S.R. and Sudharaki G.,J. Ind. Chem. 1995, 933, 34(B).
- [12]. Smolin E. M. and Ropoport L., "s-Triazines and Derivatives" Eds; Interscience
- [13]. publisher, New York, 1959.
- [14]. Nasir Hussain and G. L. Talesara, J. Ind. Council Chem.Vol. 26, No. 1, 2009, pp. 31-36
- [15]. Kuo G., De Angelis A. and Emanuel S., J. Med. Chem., 2005, 48, 5435.
- [16]. Matsuno T., Kato M. and Sasahara H.Chem. Pharm. Bull., 2000, 48, 1778.
- [17]. Sekar N, Vikas S Padalkar RJPBCS Volume,2 Issue 3 Page No. 908 July – September 2011.
- [18]. Weihong Qiaoa,*, Jing Li a, Huan Penga Elsevier aspect, 2011 384(612-617).
- [19]. Chikhalia K. H. and Desai K. R., Acta. Cienecia. Indica., XXIVC, 1998.
- [20]. Campiani G., Fabbrini M. and Caccia S., J. Med. Chem. 2001, 305, 44.
- [21]. Lee J. and Blamberg P. M.,J. Med. Chem. 2001, 3116, 46.
- [22]. Cappola C. M., Damon R. E. and Paterniti J. R.,Biorg. and Med. Chem. Lett., 2005, 809, 15.
- [23]. Schroeder D. C.; Chem. Rev. 1955, 55, 181.
- [24]. Madan A.G.; Belg. Pat.;613,154, 1962; C. A. 1963, 58, 474f.

- [25]. Nagaprasada Rao. L. and Shankar Reddy B.,Ind. J. Chem. 2001, 817, 40(B).
- [26]. Hamby J. M., Grohar P. J. and Dohetry A. M.,J. Med. Chem. 2001, 1915, 44.
- [27]. Paria M. R., Miskell L. and Tylor C. P., J. Med. Chem. 1990, 854, 33,.
- [28]. Guha S.S.; Pathak K.K.; J. Ind. Chem. Soc. 1950, 27, 535.
- [29]. Trivedi J.J.; J. Ind. Chem. Soc. 1966, 33, 786.
- [30]. Pathak M.M.; Desai.K.R.; J. Ind. Chem. Soc. 1984, 61, 814.
- [31]. Christer S.; Noréen R.; Engelhardt P.; Högberg M.;Kangasmetsä J.; Vrang L.; Sahlberg
- [32]. C.; Zhang H.; Bioorg. Med. Chem. Lett. 1998, 8, 1511.
- [33]. H. Takayanagi, Y. Mizno and T. Sasaki, J. Med. Chem. 1999,1661, 42,.
- [34]. Baldaniya B. B., Synthesis and Characterizations of N 2 -(Aryl)-N 4, N 6 -bis (6, 7-dichloro-1, 3benzothiazol-2-yl)-1, 3, 5-triazine-2, 4, 6triamines as Biological Potent Agents. E-Journal of Chemistry. 2010, 7(1), 210-214.
- [35]. Baldaniya B. B. and Patel P K, Synthesis Antibacterial and Antifungal Activities of s-Triazine Derivatives. E- Journal of Chemistry. 2009; 6(3): 673-680.

Cite this article as :

S. N. Chadotra, B. B. Baldaniya, "Synthesis and Characterizations of Some New 1,3,5-triazine-2,4,6-Triamine based Derivatives as Potent Antimicrobial and Antiinfective Agents", International Journal of Scientific Research in Chemistry (IJSRCH), ISSN : 2456-8457, Volume 4 Issue 1, pp. 29-38, January-February 2019.

URL : <u>http://ijsrch.com/IJSRCH19417</u>