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ABSTRACT 

 

In addition to high biological activity and selectivity for the target of interest, 

drug metabolism and pharmacokinetics (DMPK) properties including 

absorption, distribution, metabolism, excretion, and the potential for toxicity 

(ADMET) in humans are critical to the success of any candidate therapeutic. 

After lead discovery or design, there is considerable attention given to 

improving the compound’s in vivo DMPK/ADMET properties without losing 

its biological activity. It is common to apply some DMPK/ADMET-based 

restrictions early on in the discovery process to reduce the number of 

compounds necessary to evaluate, saving time and resources. Therefore, 

computational techniques extend to predicting this very important aspect of 

drug design and discovery. Methods used are structure-based to study the 

interaction of candidate compounds with key proteins involved in 

DMPK/ADMET and ligand-based to predict of key properties using 

quantitative structure property relation (QSPR) models. 

Keywords: Absorption, Distribution, Metabolism, Excretion, Toxicity 

properties, QSPR models 

 

I. INTRODUCTION 

 

Computational tools are routinely used to filter large 

data bases so that compounds predicted to have poor 

DMPK/ADMET profiles may be avoided1. One of the 

earliest and still the most popular filters to apply to 

any compound database when performing a vHTS is 

Lipinski’s rule of 5. These rules are: a) molecular 

weight of 500 or less, b) logP coefficient less than 5, c) 

5 or fewer hydrogen-bond donor sites d) 2x5 or fewer 

hydrogen-bond accepting sites. The rule set is based 

on an analysis of 2245 compounds from the World 

Drug Index that had reached phase II trials or higher. 

The rules were based on distributions for molecular 

weight, logP, hydrogen bond donors, and hydrogen 

bond acceptors for the top percentile of these 

compounds. This set of rules suggests the necessary 

properties for good oral bioavailability and reflects 

the notion that pharmacokinetics, toxicity, and other 

adverse effects are directly linked to the chemical 

structure of a drug. Although this criteria is well 

established and offers a relatively fast and simple way 

to apply DMPK/ADMET filters before any sort of 

screening is performed, it is incapable of predicting 
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with any certainty whether a compound will make an 

appropriate therapeutic. It has been estimated that 

almost 69% of available compounds in the Available 

Chemical Directory (ACD) Screening Database (2.4 

million compounds) and 55% of the compounds in 

the ACD (240,000) do not violate this rule of 5. 

Accordingly, this rule set has always been intended to 

be a guide and not necessarily a hard-set filter2-3. It is 

expected that such a simple rule of thumb will 

remove lead compounds; for example, many 

peptidomimetics, transporter substrates, and natural 

products will violate Lipinski’s rule. Approximately 

16% of oral drugs violate at least one criterion and 6% 

fail two or more criteria, and multiple examples exist 

of highly successful drugs that fail one or more of 

Lipinksi’s criteria including Lipitor and Singulair. At 

the same time the Lipinski’s rule will not, for example, 

recognize and remove compounds with structural 

features that give rise to toxicity. It is limited to 

evaluating oral bioavailability through passive 

transport only. When used to train models with 

machine learning, Lipinski’s rule failed to provide 

better than random classification of drugs and 

nondrugs. Additionally, it is not designed to provide 

any discrimination beyond a binary pass or fail. Any 

compound that violates two or more criteria is treated 

as an equal fail, whereas any compound that does not 

is treated as an equal pass. On the basis of its 

shortcomings, several improvements and 

replacements have been proposed for the rule of 5. 

For example, two additional criteria have been 

suggested that include the number of rotatable bonds 

being less than or equal to ten and the polar surface 

area being less than 140 Å2. Bickerton et al 

introduced the quantitative estimate of drug-likeness 

that is a score ranging from 0 (all properties 

unfavorable) to 1 (all properties favorable). This score 

is taken as a geometric mean of individual desirability 

functions, each of which corresponds to a different 

molecular descriptor. These descriptors include 

molecular weight, logP, hydrogen bond donors and 

acceptors, rotatable bonds, aromatic rings, and the 

number of structural alerts. However, the simple 

application of filters such as these during a lead 

compound search can be problematic by nature of the 

limitation of these descriptors and the evolution of 

lead compound to drug. For example, Hann et al 

found that, on average, over a set of 470 lead-drug 

pairs, lead compounds had lower molecular weight, 

lower logP, fewer aromatic rings, and fewer 

hydrogen-bond acceptors compared with their 

eventual drugs. Therefore, it can be problematic to 

apply filters designed around the average properties of 

drugs to libraries that are intended for the discovery 

oAdditionally, some of the properties used in these 

filters can depend on conformation and environment. 

Kulkarni et al state that permeability and 

hydrophobicity can change depending on the free 

energy of solvation, interaction of the drug with a 

phospholipid monolayer, and the drug’s flexibility. 

Vistoli et al state that hydrophobicity and hydrogen 

bonding are both dependent on the dynamic nature 

of molecules and that chemical information is limited 

without the use of dynamic descriptors. For a 

comprehensive review on the concept of drug 

likeness please see the 2011 review by Ursu et al. The 

same computational tools used to predict activity can 

be applied to predict a more detailed DMPK/ADMET 

profile, including solubility, membrane permeability, 

metabolism, interaction with influx/efflux transporter 

proteins, interaction with transcription proteins, and 

different aspects of toxicity. For example, QSAR-

based techniques have been especially important in 

predicting the toxicology profiles for drugs very early 

on in their development. These tools collect 

information regarding known toxins such as 

carcinogens, neurotoxins, and skin irritating agents, 

and create statistical models that can predict the 

likelihood that a particular compound will reflect 

these undesirable properties4. 

Lead improvement: Metabolism and Distribution  

Aside from general filters applied to compound 

libraries preceding a screen, computational tools can 

be used to guide hit-to-lead optimization where a 
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compound’s metabolic profile is fine tuned. This 

requires a precise balancing act as the changes 

necessary to improve a compound’s metabolic profile 

may also significantly reduce its target affinity. 

During this stage of drug development, efforts are 

made in changing the compound’s structure not only 

to improve affinity but also to improve its 

metabolism5. Therefore, although computational tools 

are useful in predicting the effects on target affinity 

from any proposed changes to the lead structure, they 

can be used in parallel to predict the affinity and 

interactions the compound may have with 

metabolizing enzymes and their regulators. The 

metabolism of a drug can have significant impacts not 

only on its bioavailability but also on its half-life and 

generation of harmful metabolites. When metabolic 

stability is lowered, a drug can lose its efficacy. 

Increasing stability can amplify harmful side effects 

owing to a long half-life. Physiologically, there are 

two important phases in drug metabolism that have 

been studied extensively. The phase I reactions 

include hydrolysis, reduction, and oxidation and are 

primarily performed by cytrochrome p450 enzymes. 

Phase II reactions are more diverse and include 

glucuronidation, sulfation, acetylation, methylation, 

and glutathione conjugation. These reactions 

accelerate the drug’s elimination from the body but 

can result in toxic products like highly reactive 

electrophiles or free radicals.  Computational tools 

have been developed to address the phase I 

metabolism reactions performed by Cytrochrome 

P450 enzymes, mainly through docking and QSAR 

procedures to predict the likelihood that a particular 

compound will bind to a cytochrome P450. At least 

57 P450 isoforms exist in the human body, but phase I 

metabolism is dominated by the isoforms 1A2, 2C9, 

2C19, 2D6, and 3A4 and computational methods are 

routinely directed against these particular P450 

isoforms. In addition to the elimination of the drug 

and generation of metabolites, P450s can also be the 

source of drug-drug interactions in that one drug can 

reduce the elimination of another drug by blocking 

access to metabolizing enzymes or can increase 

elimination by upregulating expression of those 

enzymes. For example, in the early development of 

CCR5 antagonists, experimenters discovered hits that 

contained functional groups that are common among 

CYP2D6 inhibitors. By modeling the binding of these 

ligands to CYP2D6, imidazopyridines were replaced 

with benzimidazoles so that possible drug-drug 

interactions arising from inhibition of CYP2D6 were 

avoided early on. Structure-based methods are the 

most popular computational tools for predicting the 

interaction between a compound and P450 enzymes. 

Binding poses predicted through docking studies may 

provide further insight into the specific sites of 

metabolism within the compound. For example, 

structure-based methods successfully predicted the 

metabolism of celecoxib and its 13 analogues through 

CYP2C9. In addition to some P450 isoforms, x-ray 

structures of the ligand-binding domain of prenane X 

receptor (PXR), the transcription regulator of 

CYP3A4, glutathione-S-transferases, and drug 

transporters such as P-glycoprotein have been 

determined. Structural information about PXR and 

drug transporters can be used to predict drug-drug 

interactions through the induction of CYP3A4 or 

transport channels. One of the major challenges in 

modeling P450 binding is the dynamic nature of the 

binding site that accommodates a wide variety of 

ligands. Another challenge with docking studies 

involving P450 enzymes is the fact that the goal is 

often fundamentally opposite to that of most docking 

studies in that weaker binding is usually preferred 

over stronger binding. Monte Carlo and stochastic 

simulations of a wide variety of cocrystal structures 

have allowed development of several dynamic models 

of P450 binding sites exploring the different 

orientations amino acid side chains. GOLD, FlexX, 

DOCK, AutoDock, and the scoring function C-Score 

are most commonly used for structure-based methods 

withP450 predictions. For modeling the catalytic 

reaction encountered when the ligand binds to the 
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P450 enzyme, ab initio calculations using Hartree-

Fock or density functional theory have been used.  

For example, the formation of the hydroquinone 

metabolite and electrophilic quinonone from 

remoxipride was calculated using hybrid density 

functional theory. This information was then used to 

redesign remoxipride. Density functional theory 

calculations were used to eliminate the formation of 

reactive metabolites from a series of tyrosine kinase-2 

inhibitors. These calculations correctly predicted the 

necessary changes that avoided the formation of these 

harmful metabolites. Park and Harris used DFT on 

CYP2E1 homology models along with docking and 

MD to predict the metabolism profiles for seven 

compounds. Li et al used homology modeling and MD 

to dock ligands into CYP2J2 in an effort to describe 

the binding characteristics of this enzyme. CYP2J2 is 

involved in the creation of eicosatrienoic acids from 

arachidonic acid. They were able to identify key 

residues that were important for the substrate 

specificity of CYP2J2. Additionally, they discovered 

that different ligands, although sharing the same 

scaffold, show different binding modes. Bazeley et al 

used structural information of CYP2D6 to identify 

invariant segments and performed conformational 

sampling with MD. Combining this data with neural-

network based feature selection they found that only 

three out of 20 conformations are relevant for 

CYP2D6 binding. They also analyzed the docking of 

82 compounds and showed that the most important 

attributes that conferred a compound’s affinity for 

CYP2D6 was the number of hydrogen-bonding sites, 

molecular weight, the number of rotatable bonds, 

AlogP, formal charge, number of aromatic rings, and 

the number of positive atoms. With these findings, 

they were able to achieve a prediction accuracy of 

85%. In addition to these structural methods, 

reactivity rules are also used to predict the 

metabolism of small molecules. Databases such as 

Accelrys Metabolite contain curated metabolic 

transformations from the literature. This information 

can be used to predict the various metabolic 

transformations that will be produced from an input 

structure. META is a model of mammalian xenobiotic 

metabolism that incorporates metabolic data from 

literature, textbooks, and monographs to define 

chemical transformation rules called transforms, 

which can identify and substitute functional groups. 

These focus on both phase 1 and phase 2 metabolism. 

Another method uses electronics and intramolecular 

sterics to predict sits of CYP3A4 metabolism. This 

approach focuses on the rate-limiting step of the 

hydroxylation by CYP3A4, namely the removal of the 

hydrogen-atom. The model assumes that the 

susceptibility for removal depends mainly on the 

electronic environment surrounding the hydrogen. 

Therefore, the method calculates a hydrogen 

abstraction energy for each hydrogen atom and this 

information is used to predict sites of metabolism. 

SMARTCyp is another rule-based method that 

determines the reactivity of molecular fragments 

based on activation energies calculated by quantum 

mechanical methods. It combines a reactivity 

descriptor and accessibility descriptor. The reactivity 

descriptor estimates energy required for P450 

metabolism at a given site by looking up fragments in 

an energy table for each atom. The accessibility 

descriptor is a calculation that determines the 2D 

distance from the center of the molecule a given atom 

is and always ranges between 0.5 and 1. The 

activation energy table used for the reactivity 

descriptor combines 11 previously defined rules for 

aliphatic, aromatic, and alkene carbon atoms for 50 

carbon sites with new data generated by the authors. 

This produced a collection of 139 transition states that 

can represent different types of P450 reactions.  Other 

aspects of a drug’s DMPK/ADMET profile that are 

predicted with computational tools include 

membrane permeability, which is a large part of 

bioavailability as well as volume of distribution and 

penetration of the blood-brain barrier, and blood 

plasma protein binding, involved in a drug’s volume 

of distribution and effective plasma concentrations. 

The evolution of predictive models for blood-brain 
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barrier penetration is reviewed in detail by Norinder 

and Haeberlein. Additionally, the structure of human 

serum albumin is used to predict plasma protein 

binding and volume of distribution changes6-8.  

Prediction of human Ether-a-go-go related gene 

binding  

The human ether-a-go-go related gene (hERG) 

protein is a voltage-gated potassium channel 

expressed in the heart and nervous system. The 

tetramer has six transmembrane spanning regions per 

protamer and is important for repolarization during 

the cardiac action potential. The delayed rectifier 

repolarizing current, an outward potassium current 

comprised of a rapid and slow component, is involved 

in plateau repolarization and the configuration of the 

action potential. Alterations in this channel’s 

conductance, especially blockade of the channel, can 

lead to an altered refractory period and action 

potential duration, often resulting in what is known 

as drug-induced QT syndrome and asevere cardiac 

side effect called torsades de points. The QT interval 

is the period of a cardiac cycle where ventricular 

repolarization occurs and drug-induced QT syndrome 

can lead to sudden death. Because of its importance in 

the proper regulation of cardiac action potential, off-

target interactions with hERG have caused several 

drugs to be removed from the market and/or linked to 

arrhythmias and sudden death. hERG has been 

termed an “antitarget” in the pharmaceutical industry. 

It has been estimated that 2-3% of prescribed 

medications include some unintended QT elongation. 

Though most drugs have been shown to inhibit the 

rapid component of the outward potassium current, 

interaction between drugs and hERG is not 

completely understood, and high-affinity ligands tend 

to interact with the inactivated channel with low 

voltage-dependency, whereas low-affinity ligands 

tend to interact with the activated state with high 

voltage-dependent kinetics. However, key residues 

involved in the interaction between hERG and at 

least some ligands have been identified.  

For example, Phe656 and Tyr652 in the channel pore 

may engage in π-π and cation-π interactions with the 

ligand. Thr623 and Ser624 are thought to interact 

with the polar tails of some ligands and some 

evidence exists of a second binding site. In vitro and 

in vivo methods are commonly used to evaluate drug 

candidates for potential hERG blockade activity, 

especially patch clamp techniques and radioligand 

binding assays. However, these methods are difficult 

to scale to high-throughput candidate evaluation, 

making the computational approach attractive for this 

aspect of drug discovery. SB-CADD and LB-CADD 

have both been used to develop models to 

discriminate hERG blockers and non-blockers. SB-

CADD techniques have mainly relied on docking 

with homology models and this method has not been 

validated with large, highly diverse data sets [494]. 

LB-CADD-based hERG models have been created 

using tools including ligand-based pharmacophore, 

CoMFA, Bayesian classification with QSAR, and 2D 

fragment based descriptors. Wang et al developed 

discrimination models based on molecular property 

descriptors and fingerprints. Descriptors were 

calculated using Discovery Studio molecular 

simulation package (Accelrys) and included several 

variations on logP, molecular weight, hydrogen-

bonding, the number of rotatable bonds, rings, and 

aromatic rings, the sum of oxygen and nitrogen atoms, 

and fractional polar surface area. The fingerprints 

included SciTegic extended-connectivity fingerprints 

and Daylight-style path-based fingerprints using the 

Morgan algorithm. Bayesian classifiers and decision 

tree methods were used to create models based on 

these descriptors. Wang et al analyzed the results of 

their models and found that increased hydrophobicity 

was correlated with increased hERG binding. 

Additionally, molecular weight showed a significant, 

although lesser impact on hERG binding, with 

molecules having a molecular weight under 250 being 

less likely to be a hERG blocker. Additionally, 

analysis of their fingerprints revealed that most 

hERG-binding fragments contained nitrogen atoms, 
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with four of the top five containing positively charged 

nitrogen atoms. These top five fragments also 

contained at least one oxygen atom or a carboxylic 

acid. Despite these correlations, the authors stressed 

that no single molecular property can be used to 

discriminate between hERG blockers and 

nonblockers. Obrezanova and Segall used the 

Gaussian process to build models for hERG inhibition 

as well as other ADMET properties. The Gaussian 

process is a nonlinear regression technique that is 

resistant to overtraining. It uses Bayesian inference to 

link the descriptors of a molecule with the probability 

of the molecule falling into a specific class. Eventually, 

a posterior probability distribution is created that 

defined which functions best describe the observed 

data. The mean value over all functions can provide 

the prediction, whereas the full distribution can 

provide a measure of uncertainty for each prediction. 

The hERG inhibitor model was trained on 117 active 

and 51 inactive compounds evaluated through patch 

clamp in mammalian cells with descriptors generated 

in StarDrop’s Auto-Modeler9. These 2D descriptors 

were based on SMARTS and included atom type 

counts, functionality, and molecular properties such 

as logP, molecular weight, and polar surface areas. 

Datasets were also clustered using 2D fingerprints and 

tanimoto similarity. Nisius and Gӧller used the Tripos 

Topomer Search technology to design a modeling 

approach termed topoHERG. This method screens 

reference datasets for molecules similar to a query 

compound and returns pharmacophore and shape-

based distances between a query molecule and its 

neighbors. The dataset contained 115 inactive 

compounds, 90 moderately active hERG blockers, and 

70 highly active hERG blockers. The topomer is 

defined as a 3D representation of a molecular 

fragment that is based on 2D topology and a rule set 

that generates an absolute conformation so that 

distances between topomers of different molecules in 

large databases can be calculated. To differentiate 

betweenhERG active and inactive neighbors, the 

inverse of the topomer search distance was multiplied 

by one if the topomor search neighbor was active and 

negative one if it was inactive. A molecule was 

predicted to be an active hERG blocker if its overall 

sum was greater than zero. A two-stage approach 

using two optimized models yielded a prediction 

accuracy of 76-81%. Garg et al used a genetic function 

approximation to generate quantitative structure-

toxicity relationship (QSTR) models using 2D 

descriptors generated using the QSAR+ module of 

Cerius (Accelrys). These models were trained with 56 

hERG blockers and descriptors included 

electrotopological descriptors that contained 

information regarding the topological environments 

for all atoms in the molecule as well as electronic 

interactions with other atoms in the molecule10-16. To 

perform genetic function approximation, the authors 

generated a number of random equations that were 

randomly selected as pairs. These parent pairs 

underwent crossover operations to generate new 

equations, and those that showed improved fitness 

scores were kept. In parallel, the authors generated a 

toxicophore (pharmacophore-based toxicity model) 

using Catalyst’s HypoGen that included hydrogen-

bonding, hydrophobic, aromatic, and positive 

ionizable features. Upon analysis of their models, the 

authors noted that both basic and neutral hERG 

blockers had highly flexible linkers and various 

molecular fragments17-24.  

Drug Metabolism and Pharmacokinetics/Absorption, 

Distribution, Metabolism, and Excretion and the 

Potential for Toxicity Prediction Software Packages 

and Algorithms  

There are currently many models available for 

predicting absorption, bioavailability, transporter 

binding, metabolism, volume of distribution, and 

P450 interactions. Comprehensive software packages 

have been developed such as QikProp which can be 

used to predict an array of ADMET-related properties 

such as solubility, membrane permeability, partition 

coefficients, blood-brain barrier penetration, plasma 

protein binding, and the formation of metabolites25. 

These predictions mainly come from statistical models 
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such as regression and neural networks that are 

trained on known ADMET properties for many 

compounds. The OSIRIS Property Explorer allows 

scientists to draw chemical structures and predict 

ADMET profile. The software package MetaSite 

(Molecular Discovery Ltd, Middlesex UK) is used to 

predict the site of metabolism using structural 

information from both the ligand and the enzyme. A 

probability function is created for the site(s) of 

metabolism using the free energy of P450-ligand 

binding and reactivity. This software uses structure-

based techniques to identify the relevant amino acids 

and proposes compound modifications that can 

optimize its metabolism profile. Ahlstrom et al 

proposed a three-step procedure using MetaSite to 

identify metabolic sites, in silico modification of these 

sites, and docking of new compounds. These software 

packages aim at predicting overall ADMET properties 

with convenient and accessible tools and have shown 

great benefit in drug development. For example, 

computational modeling of ADMET properties 

prevented a potential blood pressure-lowering drug 

from being lost early in the development process. The 

proposed compound showed low EC50 values, 

indicating that it was less potent than another 

compound of consideration. However, 

pharmacokinetic modeling showed that this 

compound would actually have greater efficacy than 

the one that showed higher potency. This compound 

did indeed show superior efficacy in the clinic26.  

Drug Metabolism and Pharmacokinetics/Absorption, 

Distribution, Metabolism, and Excretion and the 

Potential for Toxicity: Clinical Trial Prediction and 

Dosing  

Computational tools are also being developed to 

address the possibility of simulating early clinical 

trials to avoid the waste resources inherent in testing 

drugs with poor ADMET profiles. This is a prevalent 

problem in drug development because up to 90% of 

drugs fail during clinical development and the time 

between reaching clinical trials and approval is up to 

8 years. These simulations aim at modeling the 

pathophysiology of biological systems and the 

pharmacology of treatments and can often 

incorporate things such as disease progression, 

placebo response, and dropout rates.  

For example, clinical trial simulation was used by 

Laer et al to propose appropriate doses for sotalel 

[CAS 959-24-0; N-[4-[1-hydroxy-2-[(1-

methylethyl)amino] ethyl] phenyl] 

methanesulfonamide hydrochloride] in children and 

the Food and Drug Administration approved dosing 

changes for etanercept (Immunex Corporation, 

Thousand Oaks CA) in juvenile rheumatoid arthritis 

due to clinical trial simulations performed by Yim et 

al. Simcyp (Simcyp Ltd, Sheffield UK) is a software 

package that creates virtual populations of 

participants with specifiable genetic and physiological 

characteristics using literature data. In vitro 

metabolism data can be applied to the in-vitro-in-vivo 

extrapolation process to simulate whole-live and 

hepatic clearances for these virtual populations. 

Kowalski et al used the NONMEM software package 

(ICON plc, Dublin, Ireland) and PK/PD modeling to 

suggest adosing regimen for SC-75416, a selective 

COX-2 inhibitor that would be comparable to the 

pain relief afforded from 50 mg of rofecoxib. This 

simulation saved an estimated nine months of 

development27-29. 

 

II. CONCLUSIONS  

 

The extensive variety of computational tools used in 

drug discovery campaigns suggests that there are no 

fundamentally superior techniques. The performance 

of methods varies greatly with target protein, 

available data, and available resources. For example, 

Kruger and Evers completed a performance 

benchmark between structure- and ligand-based 

vHTS tools across four different targets, including 

angiotensin-converting enzyme, cyclooxygenase-2, 

thrombin and HIV-1 protease. Docking methods 

including Glide, GOLD, Surflex, and FlexX were used 

to dock ligands into rigid target crystal structures 
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obtained from PDB. A single ligand was used as a 

reference for ligand-based similarity search strategies 

such as 2D (fingerprints and feature trees) and 3D 

(Rapid Overlay of Chemical Structures (ROCS, 

OpenEye Scientific Software, Santa Fe, NM)), a 

similarity algorithm that calculates maximum volume 

overlap of two 3D structures. In general the authors 

found that docking methods performed poorly for 

HIV-1 protease and thrombin because of the flexible 

nature of the targets and the fact that the known 

ligands for these proteins have large molecular weight 

and peptidomimetic character. Enrichments based on 

3D similarity searches were poor for HIV-1 protease 

and thrombin datasets compared with ACE, which is 

likely due to the higher level of diversity in the HIV-

1 protease and thrombin ligand datasets. Similarity 

scoring algorithms like ShapeTanimoto, ColorScore, 

and ComboScore were compared with the 

performance of ROCS. It was found that even within 

the scoring, algorithm performance varied across 

targets. For example, ColorScore performed best for 

ACE and HIV-1 protease, whereas ShapeTanimoto for 

COX-2 and ComboScore was the method of choice for 

thrombin. All vHTS tools performed comparatively 

well for ACE, but ligand-based 2D fingerprint 

approach generally outperformed docking methods. 

The authors also note an important observation in 

that, especially for HIV-1 protease, the structure-

based and ligand-based approaches yielded 

complimentary hit lists. Therefore, performance 

metrics are not the only benchmark to consider when 

comparing CADD techniques. In some cases, 

discovery of novel chemotypes is more important 

than high hit rates or high activity. In the current 

study, Kruger and Evers found that ROCS and feature 

trees were more successful in retrieving compounds 

with novel scaffolds compared to other 

fingerprintsWarren et al published an in-depth 

assessment of the capabilities and shortcomings for 

docking programs and their scoring techniques 

against eight proteins of seven evolutionarily diverse 

target types. They found that docking programs were 

well adept at generating poses that included ones 

similarto those found in complex crystal structures. In 

general, although the molecular conformation was 

less precise across docking programs, they were fairly 

accurate in terms of the ligand’s overall positioning. 

With regards to scoring, their findings agree with 

others that docking programs lack reliable scoring 

algorithms. So while the tools were able to predict a 

set of poses that included those that were seen in the 

crystal structure, the preference for the crystal 

structure pose was not necessarily reflected in the 

scoring. For five of the seven targets that were 

evaluated, the success rate, however, was greater than 

40%. It was found that the enrichment of hits could 

be increased by applying previous knowledge 

regarding the target. However, there was little 

statistically significant correlation between docking 

scores and ligand affinity across the targets. The study 

concluded that a docking program’s ability to 

reproduce accurate binding poses did not necessarily 

mean that the program could accurately predict 

binding affinities. This analysis underscores the 

necessity not only to re-rank the top hits from a 

docking-based vHTS using computationally expensive 

tools but also to continue evaluating novel scoring 

functions that can efficiently and accurately predict 

binding affinities [Improvements in scoring functions 

involve the use of consensus scoring methods and free 

energy scoring with docking techniques. Consensus 

scoring methods have been shown to improve 

enrichments and prediction of bound conformations 

and poses by balancing out errors of individual 

scoring functions. In 2008, Enyedy and Egan 

compared docking scores of ligands with known IC50 

and found that docking scores were incapable of 

correctly ranking compounds and were sometimes 

unable to differentiate active from inactive 

compounds. They concluded that individual scoring 

methods can be used successfully to enrich a dataset 

with increased population of actives but are 

insufficient to identify actives against inactives. It 

concluded that although binding energy calculations 
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such as MM-PBSA are one of the more successful 

methods of estimating free energy of complexes, these 

techniques are more applicable to providing insights 

into the nature of interactions rather than prediction 

or screening. Consensus scoring functions where free 

energy scores of different algorithms have been 

combined or averaged have been shown to 

substantially improve performance. In their literature 

survey, Ripphausen et al reported that structure-based 

virtual screening was used much more frequently 

than ligand-based virtual screening (322 to 107 

studies). Despite a preference for structure-based 

methods, ligand-based methods on average yield hits 

with higher potency than structure-based methods. 

Most ligand-based hits had activities better than 1 μM 

while structure-based hits fall frequently in the range 

of 1-100 μM. Scoring algorithms in dockingfunctions 

have been found to be biased toward known protein 

ligand complexes; for example more potent hits 

against protein kinase targets are discovered when 

compared to other target classes (figure 1.). 

 
Figure 1. Ligand-based and structure-based lead 

compounds 

Ripphausen, et al. report that ligand-based 

computationally approaches yield compounds with 

higher affinity than structure-based computationally 

approaches. Source: One CADD approach that has 

been gaining considerable momentum is the 

combination of structure-based and ligand-based 

computation techniques. For example, the GRID-

GOLPE method docks a set of ligands at a common 

binding site using GRID and then calculates 

descriptors for the binding interactions by probing 

these docking poses with GOLPE. Multivariate 

regression is then used to create a statistical model 

that can explain the biological activity of these 

ligands. Structure-based interactions between a ligand 

and target can also be used in similarity-based 

searches to findcompounds that are similar only in 

the regions that participate in binding rather than 

cross the entire ligand. LigandScout uses such a 

technique to define a pharmacophore based on 

hydrogen bonding and charge-transfer interactions 

between a ligand and its target. Another technique 

known as the pseudoreceptor technique uses 

pharmacophore mapping-like overlaying techniques 

for a collection of ligands that bind to the same 

binding site to establish a virtual representation of the 

binding site’s structure, which is then used as a 

template for docking and other structure-based vHTS. 

This approach has been utilized by VirtualToxLab for 

the creation of nuclear receptors and cytochrome 

P450 binding site models in ADMET prediction tools 

and by Schneider et al in the modeling of the H4 

receptor binding site subsequently used to identify 

novel active scaffolds. In a recent review by Wilson 

and Lill, these methods are grouped into a major class 

of combined techniques called interaction based 

methods. A second major class involves the use of 

QSAR and similarity methods to enrich a library of 

virtual compounds prior to a molecular docking 

project. This can increase the efficiency of the project 

by reducing the number of compounds to be docked. 

This is similar to the application of CADD to enrich 

libraries prior to traditional HTS projects. This review 

also presents comprehensive descriptions of software 

packages using a combination of ligand- and 

structure-based techniques as well as several case 
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studies testing the performance of these tools. As 

discussed earlier, these methods are oftenAs discussed 

earlier, these methods are often used in serial where 

ligand-based methods are first used to enrich libraries 

that will subsequently be used in structure-based 

vHTS. The most common application is at the ligand 

library creation stage through the use of QSAR 

techniques to filter out compounds with low 

similarity to a query compound or no predicted 

activity based on a statistical model. QSAR has also 

been used as a means to refine the docking scores of a 

structure-based virtual screen. 2D and 3D QSAR can 

also be used to track docking errors. This method has 

been used by Novartis where a QSAR model is built 

from docking scores rather than observed activities, 

and this model is applied to that set to provide 

additional score weights for each compound. 

Although CADD has been applied quite extensively in 

drug discovery campaigns, certain lucrative 

therapeutic targets like protein-protein interaction 

and protein-DNA interactions are still formidable, 

problems mainly because of the relatively massive 

size of interaction sites (in excess of 1500 Å2). Lastly, 

accessibility has also been a problem with CADD as 

many tools are not designed with a friendly user 

interface in mind. In many cases, there can be an 

overwhelming number of variables that must be 

configured on a case-by-case basis and the interfaces 

are not always straightforward. A great deal of 

expertise is often required to use these tools to get 

desired measure of success. Increasingly, efforts are 

being made to develop user friendly interfaces 

especially in commercially available tools. For 

example, ICM-Pro (MolSoft L.L.C., San Diego, CA) is 

a software package designed to be a user friendly 

docking tool and replaces the front-end of current 

docking algorithms with an interface that is 

manageable to a wider audience. More recently 

gamification of the ROSETTA folding program, 

known as Foldit, has allowed individuals outside of 

the scientific community to help solve the structure 

of M-PMV retroviral protease and for predicting 

backbone remodeling of computationally designed 

biomolecular Diels-Alderase that increased its activity. 

The successful application of crowd-sourced 

biomolecule design and prediction suggests further 

potential of CADD methods in drug discovery. 

 

III. REFERENCES 

 

[1]. Van Drie JH (2007) Computer-aided drug 

design: the next 20 years. J Comput Aided Mol 

Des 21(10-11):591-601. 

[2]. Doman TN, et al. (2002) Molecular docking and 

high-throughput screening for novel inhibitors 

of protein tyrosine phosphatase-1B. J Med 

Chem 45(11):2213-2221. 

[3]. Vijayakrishnan R (2009) Structure-based drug 

design and modern medicine. J Postgrad Med 

55(4):301-304. 

[4]. Talele TT, Khedkar SA, & Rigby AC (2010) 

Successful applications of computer aided drug 

discovery: moving drugs from concept to the 

clinic. Current topics in medicinal chemistry 

10(1):127-141.  

[5]. Hartman GD, et al. (1992) Non-peptide 

fibrinogen receptor antagonists. 1. Discovery 

and design of exosite inhibitors. Journal of 

medicinal chemistry 35(24):4640-4642.  

[6]. Sawyer JS, et al. (2003) Synthesis and activity of 

new aryl- and heteroaryl-substituted pyrazole 

inhibitors of the transforming growth factor-

beta type I receptor kinase domain. Journal of 

medicinal chemistry 46(19):3953-3956. 

[7]. Singh J, et al. (2003) Successful shape-based 

virtual screening: the discovery of a potent 

inhibitor of the type I TGFbeta receptor kinase 

(TbetaRI). Bioorganic & medicinal chemistry 

letters 13(24):4355-4359. 

[8]. Shekhar C (2008) In silico pharmacology: 

computer-aided methods could transform drug 

development. Chem Biol 15(5):413-414. 

[9]. Kalyaanamoorthy S & Chen YP (2011) 

Structure-based drug design to augment hit 



International Journal of Scientific Research in Chemistry (www.ijsrch.com) | Volume 5 | Issue 4 
 

 

Akshay R. Yadav et al. Int J Sci Res ChemiJuly-August-2020; 5 (4) : 47-58 

 

 

 57 

discovery. Drug Discov Today 16(17-18):831-

839. 

[10]. Jorgensen WL (2010) Drug discovery: Pulled 

from a protein's embrace. Nature 466(7302):42-

43. 

[11]. Horvath D (1997) A virtual screening approach 

applied to the search for trypanothione 

reductase inhibitors. J Med Chem 40(15):2412-

2423.  

[12]. Ripphausen P, Nisius B, Peltason L, & Bajorath 

J (2010) Quo vadis, virtual screening? A 

comprehensive survey of prospective 

applications. J Med Chem 53(24):8461-8467. 

[13]. Enyedy IJ & Egan WJ (2008) Can we use 

docking and scoring for hit-to-lead 

optimization? J Comput Aided Mol Des 22(3-

4):161-168. 

[14]. Joffe E (1991) Complication during root canal 

therapy following accidental extrusion of 

sodium hypochlorite through the apical 

foramen. Gen Dent 39(6):460-461. 

[15]. Jorgensen WL (2004) The many roles of 

computation in drug discovery. Science 

303(5665):1813-1818. 

[16]. Basak SC (2012) Chemobioinformatics: the 

advancing frontier of computer-aided drug 

design in the post-genomic era. Curr Comput 

Aided Drug Des 8(1):1-2.  

[17]. Bohacek RS, McMartin C, & Guida WC (1996) 

The art and practice of structure-based drug 

design: A molecular modeling perspective. 

Medicinal research reviews 16(1):3-50.  

[18]. Schneider G, et al. (2009) Voyages to the 

(un)known: adaptive design of bioactive 

compounds. Trends in biotechnology 27(1):18-

26. 

[19]. Agarwal AK & Fishwick CW (2010) Structure-

based design of anti-infectives. Ann N Y Acad 

Sci 1213:20-45. 

[20]. Fink T, Bruggesser H, & Reymond JL (2005) 

Virtual exploration of the small-molecule 

chemical universe below 160 Daltons. 

Angewandte Chemie 44(10):1504-1508.  

[21]. Fink T & Reymond JL (2007) Virtual 

exploration of the chemical universe up to 11 

atoms of C, N, O, F: assembly of 26.4 million 

structures (110.9 million stereoisomers) and 

analysis for new ring systems, stereochemistry, 

physicochemical properties, compound classes, 

and drug discovery. Journal of chemical 

information and modeling 47(2):342-353.  

[22]. Yadav A, Mohite S. Anticancer Activity and In-

Silico ADMET Analysis of Malvastrum 

Coromandelianum. International Journal of 

Pharma Sciences and Research. 2020; 11(5): 71-

73. 

[23]. Blum LC & Reymond JL (2009) 970 million 

druglike small molecules for virtual screening 

in the chemical universe database GDB-13. 

Journal of the American Chemical Society 

131(25):8732-8733. Song CM, Lim SJ, & Tong 

JC (2009) Recent advances in computer-aided 

drug design. Brief Bioinform 10(5):579-591. 

[24]. Ortholand JY & Ganesan A (2004) Natural 

products and combinatorial chemistry: back to 

the future. Curr Opin Chem Biol 8(3):271-280. 

[25]. Wheeler DL, et al. (2006) Database resources of 

the National Center for Biotechnology 

Information. Nucleic acids research 

34(Database issue):D173-180. 

[26]. Information NCfB (2013) PubMed. (NCBI). 

accelrys (2012) Accelrys Available Chemicals 

Directory (ACD). (accelrys). 

[27]. Yadav A, Mohite S. In-Silico ADME Analysis of 

1, 3, 4-oxadiazole derivatives as CDK9 

Inhibitors. International Journal of Chemical 

Science. 2020; 4(3): 01-04. 

[28]. Pathade K, Mohite S, Yadav A. 3D-QSAR And 

ADMET Prediction of Triazine Derivatives For 

Designing Potent Anticancer Agents. Journal of 

University of Shanghai for Science and 

Technology. 2020; 22(11): 1816-1833 



International Journal of Scientific Research in Chemistry (www.ijsrch.com) | Volume 5 | Issue 4 
 

 

Akshay R. Yadav et al. Int J Sci Res ChemiJuly-August-2020; 5 (4) : 47-58 

 

 

 58 

[29]. Dimitropoulos D, Ionides, J. and Henrick K 

(2006) Using PDBeChem to Search the PDB 

Ligand Dictionary. Current Protocols in 

Bioinformatics (John Wiley & Sons), pp 14. 

[30]. Irwin JJ & Shoichet BK (2005) ZINC - A free 

database of commercially available compounds 

for virtual screening. J Chem Inf Model 

45(1):177-182.  

[31]. Wishart DS, et al. (2006) DrugBank: a 

comprehensive resource for in silico drug 

discovery and exploration. Nucleic acids 

research 34:D668-D672. 

[32]. Chen J, Swamidass SJ, Bruand J, & Baldi P 

(2005) Chem DB: a public database of small 

molecules and related chemoinformatics 

resources. Bioinformatics 21(22):4133-4139. 

 

Cite this article as : 

 

Akshay R. Yadav, Dr. Shrinivas K. Mohite, 

"Prediction and Optimization of Drug Metabolism 

and Pharmacokinetics Properties Including 

Absorption, Distribution, Metabolism, Excretion, and 

the Potential for Toxicity Properties", International 

Journal of Scientific Research in Chemistry (IJSRCH), 

ISSN : 2456-8457, Volume 5 Issue 4, pp. 47-58, July-

August 2020. 

URL : http://ijsrch.com/IJSRCH205310 

http://ijsrch.com/IJSRCH205310

