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ABSTRACT 

 

3D pharmacophore-based techniques have become one of the most important 

approaches for the fast and accurate virtual screening of databases with millions 

of compounds. The success of 3D pharmacophores is largely based on their 

intuitive interpretation and creation, but the virtual screening with such three-

dimensional geometric models still poses a considerable algorithmic and 

conceptual challenge. Most current implementations favor fast screening speed 

at the detriment of accuracy. This review describes the general strategies and 

algorithms employed for 3D pharmacophore searching by some current 

pharmacophore modeling platforms and will highlight their differences. 

Developing new medical drugs is expensive. Among the first steps is a 

screening process, in which molecules in existing chemical libraries are tested 

for activity against a given target. This requires a lot of resources and 

manpower. Therefore it has become common to perform a virtual screening, 

where computers are used for predicting the activity of very large libraries of 

molecules, to identify the most promising leads for further laboratory 

experiments. Since computer simulations generally require fewer resources 

than physical experimentation this can lower the cost of medical and biological 

research significantly. In this paper we review practically fast algorithms for 

screening databases of molecules in order to find molecules that are sufficiently 

similar to a query molecule. 

Keywords: 3D pharmacophore, Three-dimensional geometric models, 

Pharmacophore modeling, Virtual screening. 

 

I. INTRODUCTION 

 

When the 3D structure of the protein target has not 

been characterized, and/or when a certainnumber of 

ligands (with or without associated binding affinity) 

are available, pharmacophore models can be 

developed and used as search queries for virtual 

screening of databases1. Pharmacophore models may 

range from sub-structural type pharmacophores  to 

feature- based pharmacophores, in the latter the 

pharmacophoric points are represented by chemical 

features like hydrogen - bond acceptors/donors, 
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hydrophobic points, acidic or basic features etc. 

Moreover when the necessity occurs to move to the 

3D level, virtual screening has to deal with enhanced 

complexity with regard to functionality and flexibility 

of molecules, which requires more sophisticated tools 

for analyzing this type of data2. For implementation of 

this concept into virtual screening, the chemical 

function based approach is the most generic one. The 

originality of this type of pharmacophores mostly 

resides in the fact that their definition is general and 

represents different types of interactions between 

organic molecules and proteins. The utility of such 

models as queries for 3D database search has been 

recently reviewed. Such pharmacophores can be 

generated indifferently from ligand sets or from an 

active site structure. At the end of virtual screening 

filtering procedure a reliable method for ranking the 

hits obtained according to their expected bioactivity 

is required3. 

Methods for Pharmacophore Generation 

There are two ways to deduce a pharmacophore: 

direct- and indirect- methods. The former uses both 

the ligand and the receptor information, while the 

latter employs only a collection of ligands that have 

been experimentally observed to interact with a given 

receptor. Indirect methods can be used even in the 

absence of structure of the receptor and hence are 

more advantageous in the present scenario where the 

crystal structures of less than 10 % of drug targets are 

available. However, direct methods are becoming 

extremely important with the rapidly increasing 

number of known protein structures, which is the 

outcome of the Structural Genomics project. Once 

identified, a pharmacophore model is a versatile tool 

for the discovery and development of new lead 

compounds4. 

Steps in Identifying a Pharmacophore 

In general, all the algorithms for pharmacophore 

identification utilize the following six steps: 

1) Input 

2) Conformational Search 

3) Feature extraction 

4) Structure Representation 

5) Pattern Identification 

6) Scoring 

Inputs Required for Pharmacophore Identification 

Selecting the ligands that will be used in the 

pharmacophore analysis will have a huge impacton 

the resulting pharmacophore model. In this context, 

there are three issues that should beconsidered: the 

type of the ligand molecules, the size of the data set 

and its diversity5. 

Ligand Type 

A major application of a pharmacophore is in its use 

as a query (in the preliminary screening layer) for the 

elimination of in actives, which also implies 

prioritization of actives. Hence the development of 

such models often referred to as common feature 

pharmacophores, requires the input of set of 

molecules that share the same activity. However in 

the recent years it is increasingly clear that models 

that are trained using just the data of actives are 

incapable of discriminating between actives and 

inactives. Hence the subsequent attempts to 

improvise this methodology focused on including the 

data from inactives as well into the training set. 

Finally a third type of model, the predictive 

pharmacophoric model can be developed in cases 

where a range of activity data exists for the training 

set molecules6. 

Data Set Size 

Most of the currently available methods are designed 

to handle small data sets, which are composed of less 

than 100 ligands. This is usually a reasonable 

limitation especially at the early stages of the project 

when a large data set of ligands is unavailable. 

Data Set Diversity 

In order to get an accurate pharmacophore model, the 

data set should be as diverse as possible. This will 

allow identifying features that are most critical for the 

binding. However, it is important that the outliers 

will not have a high influence on the obtained model. 

In addition, one should remember that very different 
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ligands may bind at different binding sites and this 

may lead to a wrong pharmacophore model7. 

Conformational Search 

The pharmacophore identification problem is 

complicated substantially by the fact that ligands are 

very flexible molecules. That is, they possess many 

internal degrees of freedom. The most common one is 

the rotation of molecular parts around a connecting 

single bond. As a result, a ligand may have many 

possible conformations. Each conformation may bind 

in the active site of the considered receptor. Thus, all 

the conformations of each input ligand have to be 

considered during a search for a pharmacophore. 

Feature Extraction 

In order to perform pharmacophore analyses relevant 

features in a molecule need to be identified. This can 

be achieved through the use of predefined atom types 

with optionally additional centroid “dummy” atoms 

[Smellie, A., et al., 1995a; Smellie, A., et al., 1995b] or 

topological substructural definitions at search time or 

function based pharmacophoric features. There are 

three main levels of resolution for defining the 

features: 

Atom-Based: One of the simplest ways to define a 

feature is by the 3D position of an atom, associated 

with the atom type. 

Topology-Based: In some methods the atoms are 

grouped into topological features like phenyl ring and 

carbonyl group. 

Function-Based: In other methods the atoms are 

grouped into chemical functional features that 

describe the kind of interactions important for ligand-

receptor binding. The most common functional 

groups are: 

1. Hydrogen bond acceptor, for example carbonyl, 

aliphatic ether and hydroxyl. 

2. Hydrogen bond donor, such as 

primary/secondary amide, aniline nitrogens and 

Hydroxyl Base (positively charged at 

physiological pH 7), for example sp3 N aliphatic 

amines, hydrazines, guanidines and 2/4 amino 

pyridines. 

3. Acid (negatively charged at physiological pH 7), 

such as carboxylic acid, acylsulfonamide, 

unsubstituted tetrazole and on occasion phenols. 

4. Aromatic ring, generally (but not always) in the 

form of ring centroid. 

5. Hydrophobic group, for example certain 5/6 

membered aromatic rings, isopropyl,butyl and 

cyclopentyl 

The difference between the topological 

representations to the functional representation is 

that the resolution of the functional features is lower. 

For example, a phenyl ring is only one specific type of 

aromatic ring. Several topological features may have 

the same chemical function and thus can be classified 

as the same functional feature. Note that the 

functional features are not mutually exclusive. For 

example, hydroxyl oxygen can be classified as both a 

hydrogen-bond acceptor and donor. In addition, 

hydrogen-bond acceptor can also be negatively 

charged8-9. 

Structure Representation 

For each ligand structure the selected features are 

combined to form a representation of thewhole 

structure. 

Pattern Identification 

The various stages involved in identification of 

common features of pharmacophore are: 

a. The constructive stage identifies pharmacophore 

candidates that are common among the most active 

set of ligands. This is done in the following way: First 

the set of maximumeight most active compounds is 

determined. Then, all pharmacophore candidates 

consisting of up to five features between the two most 

active ligands are identified by a pruned exhaustive 

search on all their conformations. Finally, only 

pharmacophore candidates which fit a minimum 

subset of features of the remaining most active 

compounds are retained. The resulting 

pharmacophore candidates are influenced by the 

diversity of the data set. For example, the diversity of 

the two most active ligands influences the number of 

enumerated pharmacophore candidates10. 
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b. The subtractive stage removes those 

pharmacophore candidates constructed in the 

previous stage that are also present in more than half 

of the least active ligands. 

c. The optimization stage attempts to improve the 

score of the pharmacophore candidates that pass the 

subtractive stage by simulated annealing. 

Scoring 

In this stage, the pharmacophore candidates were 

scored and ranked, which are obtained bythe previous 

stages. The basic requirement from a scoring scheme 

is that the higher thescoring, the less likely it is that 

the ligands satisfy the pharmacophore model by a 

chancecorrelation. The size of the pharmacophore 

candidates can sometimes be misleading as ascore. For 

instance, a charged center is rarer than a hydrophobic 

one. In HipHop the scoring scheme can account for 

partial fits. Specifically, pharmacophore candidates 

are ranked based on the portion of input ligands that 

fit the proposed pharmacophore model. Furthermore, 

the scoring function takes into account the 

infrequentand exceptional of the features. For 

example, a negative charge center is an infrequent 

and exceptional feature and, therefore, has the largest 

weight11. 

Methods for Similarity-based Virtual Screening 

One way to combat a disease is to find a ligand that 

will dock with a protein important for that disease, 

and disrupt its normal function. In general one will 

have a chemical library of molecules that are available 

for manufacturing. Using computers for predicting 

the activity of very large libraries of molecules to 

identify the most promising leads for further 

laboratory experiments is called virtual screening . 

Simulating the docking between the protein and each 

ligand on a computer in order search for promising 

ligands in a library of available molecules requires a 

lot of computing time and available protein structures.  

Instead one may rely on the idea that similar 

structure leads to similar properties, and predict the 

properties of a molecule by studying the properties of 

similar molecules. Hence, if one has identified a 

ligand that binds to a given target, for example from 

another medical drug, or observed in nature, one may 

find other candidate ligands by looking for ligands in 

a chemical library or database that are similar to the 

known binder. This similarity- and ligand-based 

approach to virtual screening works well for the right  

formalizations of how to represent molecules and 

quantify their similarity. Due to the size of chemical 

databases such as PubChem and ChemDB, the 

similarity-baed approach to virtual screening also 

needs efficient methods for screening a database of 

molecular representations for molecules that are 

sufficiently similar to a query molecule. In this paper 

we review such screening methods for molecules 

represented as fingerprints or SMILES strings12. 

 

 
 

 Figure 1. A ligand docking to a protein. Another 

ligand may dock with the same protein, if it is 

sufficiently similar. 

Similarity between molecules  

There are of course several ways to quantify the 

similarity between two sets (or multi-sets) of features, 

but the Tanimoto coefficient has proven very useful. 

If A and B are sets, or multi-sets, of features, then the 

Tanimoto coefficient, ST (A, B), is: 

 
If A and B are given as two bit-strings, then the 

Tanimoto coefficient becomes: 

 
where and are bitwise logical 'and' and logical 'or' 

respectively, and |A| is the number of bits set to one 

in the bit-string A. See figure 4 for an example. 
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Figure 2. The notation used for bit-strings. 

The Tanimoto coefficient as defined above quantifies 

the similarity between two bit-strings as a number in 

the interval [0;1], where 0 says that the two bit-

strings have no one-bits in common, and 1 says that 

the two bit-strings are equal13. The coefficient is only 

defined if there is at least one bit set to one in the two 

bit-strings (i.e. one feature is shared), which is a very 

reasonable assumption for molecular fingerprints14-15.  

Recall, that the LINGO profile of a molecule is the 

multi-set of LINGOs in its SMILES string. The 

similarity between two ligands can thus be measured 

as the Tanimoto coefficient between their LINGO 

profiles. This measure is called the LINGOsim 

between the ligands16. One of the major motivations 

for quantifying molecular similarity is to identify 

molecules for medical drugs. The problem can be 

formalized as: We are given a database of 

representations (for example fingerprints or SMILES) 

of synthesizable molecules, a query molecule A, and a 

minimal similarity SMIN. The task is then to find all 

molecules B in the database where ST (A, B) ≥ SMIN. 

This query can of course be performed by a naive 

screening of the database, where we examine every 

fingerprint A in the database to compute ST (A, B)17-18. 

However, due to the typical size of the database, this 

is not a desirable approach. In the following sections, 

we review how to perform such queries more 

efficiently in practice. We first consider the problem 

for molecules represented as bit-strings (fingerprints), 

and secondly, for molecules represented as SMILES19-

20. 

 

 

 

II. CONCLUSION 

 

In rational drug design process, it is common that the 

biological activity data of a set of compounds acting 

on a particular protein is known while information of 

the three dimensional structure of the protein active 

site is absent. A three-dimensional pharmacophore 

hypothesis that is consistent with existing molecules 

should be useful and predictive in evaluating new 

compounds and directing further synthesis. The 

pharmacophore modeling of the synthesized 

molecules shows how a set of active molecules can 

uncover the molecular characteristics or features 

essential for activity. By reviewing reviewed 

computationally efficient methods for solving the 

problem of identifying all molecules stored in 

database that have a certain similarity to a query 

molecule. We have considered to problem when 

molecules were represented by bit-strings, and when 

molecules were represented by SMILES string. In 

both cases, the similarity measure used has been the 

Tanimoto coefficient. The growing size of chemical 

databases implies a growing need for solutions to this 

problem that are efficient in practice. An area for 

improvement that we have not considered in details is 

memory usage. Our data structures consume a lot of 

memory. To store very large molecule databases it 

might be relevant to create an I/O efficient 

implementation that stores the data structures on disk 

in way that can be processed efficiently without 

reading the entire structure into memory. 

 

III. REFERENCES 

 

[1]. Brown, R.D. and Martin, Y.C. (1997) The 

information content of 2D an 3D structural 

descriptors relevant to ligand receptor binding. 

J. Chem. Inf. Comput. Sci. 37, 1–9. 

[2]. Ewing, T. et al. (2006) Novel 2D fingerprints for 

ligand-based virtual screening. J. Chem. Inf. 

Model. 46, 2423–2431. 



International Journal of Scientific Research in Chemistry (www.ijsrch.com) | Volume 5 | Issue 5 
 

 

Akshay R. Yadav et al. Int J Sci Res Chemi September-October-2020; 5 (5) :  77-82 

 

 

 82 

[3]. Hert, J. et al. (2004) Comparison of fingerprint-

based methods for virtual screening using 

multiple bioactive reference structures. J. 

Chem. Inf. Comput. Sci. 44, 1177–1185 

[4]. Willet, P. (2005) Searching techniques for 

databases of two- and threedimensional 

chemical structures. J. Med. Chem. 48, 4183–

4199 

[5]. Humblet, C. and Dunbar, J.B., Jr (1993) Chapter 

VI. Topics in drug design and discovery. In 

Annual Reports in Medicinal Chemistry, (Vol. 

28) (Venuti, M.C., ed.), pp. 275–284. 

[6]. Evers, A. et al. (2005) Virtual screening of 

biogenic amine-binding Gproteincoupled 

receptors: comparative evaluation of protein- 

and ligandbased virtual screening protocols. J. 

Med. Chem. 48, 5448–5465. 

[7]. 38 Hurst, T. (1994) Flexible 3D searching: the 

directed tweak technique. J. Chem. Inf. 

Comput. Sci. 34, 190–196. 

[8]. Wolber, G. et al. (2006) Efficient overlay of 

small organic molecules using 3D 

pharmacophores. J. Comput.- Aided Mol. Des. 

20 (12), 773–788. 

[9]. Sheridan, R.P. and Kearsley, S.K. (2002) Whydo 

we need so many chemical similarity search 

methods? Drug Discov. Today 7, 903–911. 

[10]. Johnson, M.A. and Maggiora, G.M. (1990) 

Concepts and Applications of Molecular 

Similarity. John Wiley & Sons, Inc. Leach, A. 

(2001) Molecular Modelling: Principles and 

Applications (2ndedition), Prentice Hall 43 

Zhu, F. and Agrafiotis, D.K. (2007) Recursive 

distance partitioningalgorithm for common 

pharmacophore identification. J. Chem. Inf. 

Model. 47, 1619–1625. 

[11]. Brint, A.T. and Willet, P. (1987) Algorithms for 

the identification of threedimensional maximal 

common substructures. J. Chem. Inf. Comput. 

Sci. 27, 152–158. 

[12]. Mason, J.S. et al. (2001) 3-D pharmacophores in 

drug discovery. Curr Pharm. Des. 7, 567–597 

[13]. Bohm, H-J. et al. (1996) Wirkstoffdesign. 

Spektrum Akademischer Verlag Wermuth, C.G. 

et al. (1998) Glossary of terms used in medicinal 

chemistry (IUPAC Recommendations 1998). 

Pure Appl. Chem. 70, 1129–1143. 

[14]. Burger, A. (1991) Isosterism and bioisosterism 

in drug design. Fortschr. Arzneimittelforsch. 

37, 287–371. 

[15]. Hansch, C. (1974) Bioisosterism. Intra-Science 

Chem. Rept. 8, 17–25 

[16]. Lipinski, C.A. (1986) Bioisosterism in drug 

design. Ann. Rep. Med. Chem.21, 283–291. 

[17]. Thornber, C.W. (1979) Isosterism and 

molecular modification in drug design. Chem. 

Soc. Rev. 8, 563–580 

[18]. Catalyst, 4.11, Accelrys Inc., http://accelrys.com 

[19]. Greene, J. et al. (1994) Chemical function 

queries for 3D database search. J. Chem. Inf. 

Comput. Sci. 34, 1297–1308. 

[20]. Kurogi, Y. and Guner, O.F. (2001) 

Pharmacophore modeling and three 

dimensional database searching for drug design 

using catalyst. Curr. Med. Chem. 8, 1035–1055. 

 

 

Cite this article as : 

 

Akshay R.Yadav, Dr. Shrinivas K. Mohite, 

"Pharmacophore Mapping and Virtual Screening", 

International Journal of Scientific Research in 

Chemistry (IJSRCH), ISSN : 2456-8457, Volume 5 

Issue 5, pp. 77-82, September-October 2020. 

URL : http://ijsrch.com/IJSRCH205617 

http://ijsrch.com/IJSRCH205617

