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ABSTRACT 

Indiscriminate dumping of organic waste is a global problem rapidly being 

recognized as a health hazard since it attracts rodents and pests that risk human 

life. As a result, investigation of ways to manage it, which, among other things, 

involves investigation of the kinetics of its degradation by microorganisms, is 

crucial. Generally, mathematical and computational models assist in building a 

connection between input and output variables. This study examines the use of 

Monod, Haldane, and Han-Levenspiel models to model growth curves obtained 

from electricity obtained from microbial fuel cells (MFCs) loaded with fruit waste 

from Kenyan markets. The accuracy of the fitted model was assessed using JMP 

statistical analysis to provide a test of significance for each market fruit waste 

collected for the study. Kinetic constants of each model were determined as 

follows: the constant for the Monod model ranged from 99.57mgL−1to 99.63mgL−1, 

the constant for the Andrew Haldane model ranged from 50.09 mgL−1 to 

50.18 mgL−1  and that of Han-Levenspiel model ranged from 91.09 mgL−1 to 

100.75mgL−1. Multivariate data analysis of market fruit waste (treatment) against 

both Voltage and current indicated a significant difference in fruit waste mixture 

and the banana waste, while fruit waste versus Power showed no statistical 

significant difference in output (P˂0.05) in all the treatments. The findings show 

that extensive use of mathematical models can give a new understanding of how 

degradation inhibits the bacterium's electricity production, thus leading to new 

insights into predicting the progress of organic waste reduction in bioremediation 

analyses. The current study suggests that bacteria consortia have great potential in 

biodegrading market fruit waste in a fuel cell hence generating electricity. As a 

result, a successful scale-up process should include material and design 

optimization that allows for a cost and energy-efficient technology, more lab-based 
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and field-based research work to develop this technique for large-scale 

applications. 

Keywords : Fruit Waste, Inhibitor, Microorganism, Treatment, Segregation, 

Kinetic Models 

 

I. INTRODUCTION 

 

Agriculture-related renewable and sustainable energy 

has become increasingly important in recent years. 

Agriculture generates massive amounts of waste, and 

how this waste is used could be a key element in energy 

production. Furthermore, the demand for energy in 

industry and everyday life is continually increasing, 

necessitating further study to solve massive waste 

generated. The solution to this issue is developing 

appropriate technologies for high-efficiency and cost-

effective energy production and the use of second-

generation energy sources, such as agricultural waste 

[1]. Due to rising costs of non-renewable energy and 

environmental effects, biological hydrogen production 

catalyzed by microorganisms is a possible alternative 

[2]. Bio-hydrogen is a novel renewable energy carrier 

that is more environmentally friendly than other 

renewable energy carriers such as wind, hydropower, 

biofuel, solar, and geothermal energy. Light-dependent 

activities and dark fermentation are the two main 

strategies to produce hydrogen via biological 

conversion pathways [3]. A microbial fuel cell (MFC) is 

a device that converts chemical energy to electrical 

energy using microorganisms as catalysts. For energy 

generation, a microbial fuel cell uses the electron-

extracting characteristics of the bacteria that are 

connected to the Anode. Organic material is oxidized 

by these bacteria and releases carbon dioxide and 

protons into the anode chamber solution. Electrons are 

transmitted to the Anode, then to the cathode, 

consumed to reduce oxygen via an external electrical 

conductor. 

 

Meanwhile, protons pass via a membrane into the 

cathodic chamber. As a result of the flow of electrons, 

a current is generated [4]. In order to generate more 

energy, the standard technique employed by 

researchers is to stack several MFCs [5]. Furthermore, 

the incorporation of a better design MFC modules, 

leads to a more efficient electrochemical treatment and 

higher levels of usable electricity, which can be used to 

power indoor lighting [6]. As a result, this study aims 

to examine the kinetics of reducing fruit waste by 

bacteria in the MFCs and assess the model's limitations 

using statistical analysis. The findings could be used in 

secondary modeling studies, such as those looking at 

the effects of pH, temperature, and external resistance 

on reduction kinetics. As a result, new data and results 

should emerge, potentially spurring and revealing new 

knowledge and improvements to previous work [6]. 

 

1.1. Microbial growth phases 

A previous study has found that voltage outputs are 

proportional to the pace of microbial growth, which is 

divided into phases [7]. Microorganisms in the lag 

phase slowly adapt to their surroundings, grow slowly, 

and once adapted, quickly metabolize the organic stuff 

available and reproduce, increasing their number 

numerically. The Log phase is a stage in which cell 

growth slows and strikes a balance with dying cells. 

The microbial population in the stationary phase 

remains stable. Finally, the Death stage occurs when all 

organic substance in the environment has been 

depleted, and all cells begin to die, as shown in Figure 

1, [8]. 
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Microbial Growth Curve 

 
Figure 1: A typical bacterial growth curve [9]. 

 

II. MATERIALS AND METHODS 

 

2.1. Study area and sample collection 

 

The samples used in this study include Rumen fluid 

from a slaughterhouse in Huruma Estate (1˚15'16. 4" S 

36˚52'42.4"E), fruit wastes from Ngara Fig-tree 

(1°16'27.9" S 36°49'20.6" E), Muthurwa (1˚17'13.3"S 

36˚49'56.2"E), Kangemi (1˚15'52.0"S 36˚44'54.4"E), 

and City park markets (1˚15'42.1"S 36˚49'33.6"E) all 

located in Nairobi County Kenya as shown in Figure 2.  

 
Figure 2 : The map of Nairobi County in Kenya and 

the sampling sites for fruit waste and Goat rumen 

fluid. 

2.2. Statistical analysis 

 

The quality of fit to the same experimental data was 

statistically tested using JMP methods to determine 

whether there is a statistically significant difference 

between distinct fruit waste and the varied parameters. 

 

 

2.3. Simulation design 

2.3.1: Models of Substrate utilization and Current 

density at the Anode 

The kinetics of anode respiration bacteria (ARB) are 

closely linked to energy generation and substrate use. 

Several models have been devised to determine the 

kinetic parameters of ARB due to the participation of 

the anode biofilm [11]. The gradient in substrate 

concentration and the potential difference between the 

terminal electron acceptor and the Anode are two 

aspects to consider when determining kinetic 

parameters [12]. The Monod model (Equation 2.1), in 

which a single substrate limits the bacteria's growth, 

was the most utilized in prior studies [12-14]. Despite 

this, Haldane Andrew's kinetics model was devised to 

account for this shortcoming, which includes the 

substrate inhibition effect (Equation 2.2). Intense 

Osmotic pressure or substrate toxicity may cause 

substrate inhibition [15]. The Han-Levenspiel model 

(Equation 2.3) was used to characterize microbial 

growth ceasing entirely when a threshold inhibitor 

concentration (𝐒𝐦) was achieved, and so accounted for 

competitive, uncompetitive, and noncompetitive 

inhibition [16]. 

 

Monod Model: 

 
 

 

Andrew's Kinetic Model: 

  

 
Han-Levenspiel Model: 
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Where: 

𝐫 - Is the substrate utilization rate (g/L. d), the 

maximum output current density (mA/m2) or  

Maximum power density (mW/m2) or Voltage 

(mV) at each substrate concentration. 

𝐫𝐦𝐚𝐱 −  Is the substrate utilization rate (g/L. d), the 

maximum output current density (mA/m2) or 

maximum power density (mW/m2) , or Voltage 

(mV) among all range of substrate concentration., 𝐒– Is 

the substrate concentrations (mgL−1). ,  𝐊𝐒– Is the half-

saturation coefficient (mgL−1).,  𝐊𝐈𝐇 – Is the self-

inhibition coefficient (mgL−1).,  𝐒𝐦 – Is the critical 

inhibitory concentration above which growth stops 

(mgL−1)., 𝐧/𝐦– Are the empirical constants used to 

account for different types of inhibition.  

 

2.4. Microbial Fuel Cells Construction 

The anodic and cathodic chambers were prepared in 

two 2-liter containers. Through two small holes 

punched in the tops of the containers, a wire was 

introduced. One end of the copper wire was attached 

to a 5.7cm long graphite rod electrode with a 0.7cm 

diameter. 2.5 liters of 1M NaCl, 3% agarose solution, 

and lamp wicks were used to make a salt bridge. The 

wicks were boiled in a NaCl and 3% agarose solution 

for 15 minutes before being frozen at -4°C. The 

solidified salt bridge was transferred through PVC 

pipes and then sealed with Araldite adhesive between 

the two chambers, making it leak-proof. (Figure 3). 

 

 
Figure 3: Double chamber microbial fuel cell setup 

and digital multimeter DT9205A-(Output readings). 

2.5. Sample collection of fruit wastes and Rumen fluid 

Waste samples were collected from selected markets in 

Nairobi city, as shown in Figure 2. The wastes were 

segregated and left to stand in the laboratory for three 

days to decompose naturally. After that, the various 

fruit wastes were blended separately and kept under 

refrigerated conditions for use. Fresh Rumen fluid and 

cow dung were collected from Huruma slaughterhouse 

in Nairobi County in 5-liter cooler box containers and 

sampling bags, sealed, and transported to the 

Microbiology laboratory at the College of Agriculture 

and Veterinary Sciences, the University of Nairobi for 

bacterial studies. 

2.6. Bacteria Total Count, Culture, Isolation, and 

Identification 

The Standard Plate Count (SPC) method [17-18] gave 

the total bacteria in the rumen fluid and cow dung 

samples. The samples were plated in semi-solid 

nutrient media and then incubated for 48 hours at 30°C 

to promote bacterial growth. All bacterial plate counts 

were expressed as the number of colony-forming units 

(CFU) per milliliter (ml). 
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III. RESULTS AND DISCUSSIONS 

 

In this study, microorganisms were used to generate 

Voltage in Microbial fuel cells utilizing the fruit waste. 

The Voltage was monitored for 22 days using a digital 

multimeter. Results indicated voltage generation and 

average daily Voltage reported.  

 

3.1. Modelling of Substrate utilization and Simulation 

Approach 

The modeling studies were used to determine whether 

the chemical reactions in the MFC chambers were 

proceeding as expected of the microbial activities in 

different substrates (market fruit wastes) for 22 days. 

 

3.1.1 Model assumptions  

In mathematical modelling the influence of different 

operating conditions and design parameters on the 

performance of the MFC system is reflected [19]. 

Bioelectrochemical being a complex system, there are a 

number of assumptions which needs to be considered 

for developing a mathematical or numerical model of a 

complex system (BES) into a simple and linear form. 

(i) In the cathodic chamber, a non-limiting reaction rate is 

considered [20]  

(ii) The pH, temperature, and other operational variables 

are supposed to be fully controlled in order to limit their 

impact on the microenvironment of MFC [21].  

(iii) The majority of modeling approaches are built with 

one consideration (e.g., electrochemical or biological) in 

mind while keeping other parameters constant/controlled. 

etc. 

 

The voltage, current and power obtained when various 

market fruits wastes were used as goat rumen fluid used 

as catalyst in MFC for 22 days plots are shown in Fig 4, 

Fig 5 & Fig 6 respectively.  

 

 
Figure 4. Graphs of voltage generated from fruit waste 

against time (days) 

 

 
Figure 5. Graphs of current generated from fruit waste 

against time (days) 

 

Highest voltage, current and power was obtained from 

banana fruit waste as shown in the figures indicating 

availability of enough carbon in the substrate for 

microbes to feed on. 

 
Figure 6. Graphs of power from fruit waste against 

time (days) 
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3.1.2. Estimation of anode respiration Kinetic 

parameters 

3.1.2.1. Bacterial growth 

The Monod model (Equation 3.0) was used to calculate 

the kinetic parameters for bacterial growth in the batch 

MFC because it describes the unstructured and 

unsegregated phenomenon in the cell. The half-

saturation coefficient ( KS ), maximum growth rate 

(µmax), and growth yield coefficient (μ), of bacteria in 

the various fruit waste-fed MFC were recorded after 

408hours (17 days) of microbial activities, calculated 

using Equation (3.0 – 3.3). 

Monod Model: 

r =  rmax ∗
S

(KS +  S)
    (3.0)  

Taking the reciprocal of Monod Equation: (y = mx + 

c). Note: (r = µ)  

1

µ
=

KS + S

µmax  ∗ S
=  (

KS

µmax
) ∗ (

1

S
) +  (

1

µmax
) (3.1) 

  µ =
amount of biomass produced

time taken
  (3.2) 

µmax =
amount of biomass produced

initial biomass x time taken
 (3.3) 

 

Where: S-Is substrate concentration, µ-Is growth yield 

coefficient. µ𝐦𝐚𝐱 –Is maximum growth rate. KS -Is 

half-saturation coefficient 

 

Taking an example of a Banana fruit, the maximum 

voltage produced = 336 mV, and Time taken = 408 

hours (17 days) 

µ = 0.82 

Specific growth rate(µ) =  0.82h−1 µmax = 0.003 

Maximum specific growth rate (µmax) = 0.003h−1 

Using Monod equation: (KS)-half-saturation 

coefficient for Banana fruit was calculated: 

1

µ
=

KS + S

µmax . S
=  (

KS

µmax
) . (

1

S
) +  (

1

µmax
)  

KS= 99.63 ± 0.03mgL−1 

Using the same equations (3.0-3.3) above, the half-

saturation coefficient (KS), growth yield coefficient (µ) 

and maximum growth rate (µmax) results for all the 

fruit waste samples collected from selected markets in 

Nairobi County, Kenya, were calculated and tabulated 

as in (Table 1).  

Table 1: half-saturation coefficient, growth yield 

coefficient, and maximum growth rate values for 

vegetable waste-fed MFCs 

 

µ- Growth yield coefficient. µ𝐦𝐚𝐱– Maximum growth 

rate. 𝐊𝐒. - Half-saturation coefficient 

From the results obtained (Table 1) in this study, 

banana fruit waste gave the highest growth yield 0.82h-

1 and a high half-saturation coefficient of 

99.66±0.03 mgL−1 , attributed to the availability of 

carbon sources in bananas fruit waste. The lowest 

output in growth yield coefficient was obtained by the 

mixture of fruits sample of 0.53h-1, and the lowest value 

obtained for the half-saturation coefficient was the one 

obtained for watermelon fruit waste at 

99.57±0.03 𝑚𝑔𝐿−1 which can be attributed to 

competing reactions among the substrates, thus 

lowering the bacteria's growth yield, hence inhibiting 

the substrate's degradation process. Studies by [22-23] 

reported that toxic effects from other vegetables might 
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inhibit the degradation process at high substrate 

concentrations. As a result, limiting the bioavailability 

of a degradable substrate could either improve the 

overall dynamics of degradation by lowering microbial 

access to the substrate or slow down biodegradation by 

mitigating the contaminant toxicity effects on 

microorganisms. According to [24], biodegradation 

kinetics of a self-inhibitive substrate are primarily 

concerned with bacteria's physiological reactions to 

substrate concentration levels. However, using 

numerical solutions, this study has theoretically 

investigated the role and interconnections between 

self-inhibition and mass transfer constraints, resulting 

in a simple model that could be useful in practice. 

Although both self-inhibition and mass transfer have 

negative impacts on biodegradation, their combined 

action may increase biodegradation rates over a 

concentration threshold by boosting overall 

degradation dynamics and mitigating the pollutant 

toxicity effects on microorganisms. 

Monod model only explained microbial growth and 

activities but not the effect of self-inhibition. This 

study used other models (Haldane Andrew's Kinetic 

and Han-Lavenspiel Models) to observe substrate 

consumption and bacteria growth and estimate 

substrate degradation's kinetic parameters. 

3.1.2.2 Substrate self-inhibitory effect 

Haldane Andrew's Kinetic Model (Equation 3.4) was 

used to calculate the KIH self-inhibitory effect 

coefficient of the substrate (banana fruit waste). 

Substrate-fed MFC was found to be 50.18 ±

0.04𝑚𝑔𝐿−1 after 408hours (17 days) of microbial 

activities using Equation (3.0 – 3.3) and (3.4 – 3.5), 

indicating that the inhibitory effect was weak since the 

KIH value was high. 

Haldane Andrew's Kinetic Model 

 𝑟 =  𝑟𝑚𝑎𝑥 ∗
𝑆

(𝐾𝑆+ 𝑆 +
𝑆2

𝐾𝐼𝐻
)
 (3.4)   

 Note: (𝑟 = µ)  

Taking the reciprocal of Haldane Andrew's Kinetic 

Equation: (y = mx + c) 

1

µ
=

𝐾𝑆 +
𝑆2

𝐾𝐼𝐻

µ𝑚𝑎𝑥
∗

1

𝑆
+

1

µ𝑚𝑎𝑥
 (3.5) 

Where: S-Is substrate concentration. µ-Is growth yield 

coefficient. µ𝒎𝒂𝒙  –Is maximum growth rate. 𝑲𝑺  -Is a 

half-saturation coefficient. 𝑲𝑰𝑯 -Is inhibitory effect 

coefficient 

Given: µ = 0.82h-1, µ𝒎𝒂𝒙 = 0.003h-1, S = 100𝑚𝑔𝐿−1, 𝐾𝑆  

= 99.63𝑚𝑔𝐿−1 

Using Haldane Andrew's equation 3.5: the (𝑲𝑰𝑯) - 

inhibitory effect coefficient for Banana fruit waste was 

calculated: 

1

µ
=

𝐾𝑆 +
𝑆2

𝐾𝐼𝐻

µ𝑚𝑎𝑥
∗

1

𝑆
+

1

µ𝑚𝑎𝑥
  

𝑲𝑰𝑯 =  50.18 ± 0.04𝑚𝑔𝐿−1 

Using the same equations (3.4-3.5) above, the self-

inhibitory effect coefficient (𝐾𝐼𝐻) results for all the 

fruit waste samples collected from markets in Nairobi 

County, Kenya, were calculated and tabulated in Table 

2 below.  

Table 2 : Self-inhibitory effect coefficient for all the  

 

In this study, banana fruit waste gave the highest 

inhibitory coefficient output than a mixture of fruit 

waste. All the market fruit wastes sampled gave self-
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inhibitory effect coefficient (𝐾𝐼𝐻) output in a range of 

50.18 ± 0.04𝑚𝑔𝐿−1  −  50.09 ± 0.04𝑚𝑔𝐿−1, 𝑎 clear 

indication that the inhibitory effect was weak; when 

(𝐾𝐼𝐻) value is high, the inhibitory effect is weak. When 

(𝐾𝐼𝐻) value is small, the inhibitor is tightly bound, and 

the number of active enzymes present will be limited; 

hence the inhibitory effect will be substantial [25]. 

Therefore in this study, the inhibitors were loosely 

attached to the microbes. The number of active 

microbes present was high enough to bio-degrade the 

available substrate in a given experimental period of 22 

days, as was earlier indicated by the Monod model on 

microbial growth and substrate degradation. Non-

competitive inhibition is when the inhibitor does not 

bind to the active sites of the substrate, giving the 

substrate space to attach to the bacteria and form a 

complex that decreases the activation energy of a 

chemical process. A study by [26] observed that when 

the KIH value was high (KIH ˃10𝑚𝑔𝐿−1), the inhibitory 

effect was weak and that when KIH value was small (KIH 

˂ 10𝑚𝑔𝐿−1) meant the inhibitor was tightly bound. 

The amount of active enzyme present was small, 

indicating that the inhibitory effect was substantial. 

The KIH values obtained in this study compared well to 

(KIH =67𝑚𝑔𝐿−1) in the previous study by [27].  

 

3.1.2.3 Critical inhibitor concentration  

Han-Lavenspiel model (Equation 3.6) was used to 

calculate the critical inhibitor concentration 

coefficient (𝑺𝒎) of the substrate (banana fruit waste). 

The amount of substrate degraded by the microbes was 

up to 100.75 ± 3.71𝑚𝑔𝐿−1 after 408hours (17 days) of 

microbial activities using Equation 3.0 – 3.3, 3.4 – 3.5, 

and 3.6, suggesting that after consumption of the 

100 𝑚𝑔𝐿−1 substrate and the 0.75 𝑚𝑔𝐿−1  substrate 

initially in the rumen fluid, the chemical reaction 

completely stopped and the production of electrons 

and protons, indicating the microbes' death and the end 

of a chemical reaction.  

Han-Levenspiel Model : Note: (𝑟 = µ) and (𝑛 = 𝑚 = 1) 

𝑟 =  𝑟𝑚𝑎𝑥 ∗
𝑆 (1 −

𝑆

𝑺𝒎
)

𝑛

𝑆 + 𝐾𝑆 ∗ (1 −
𝑆

𝑺𝒎
)

𝑚  (3.6) 

Where: S-Is substrate concentration, µ-Is growth yield 

coefficient. µmax – Is maximum growth rate. 𝑲𝑺 – Is a 

half-saturation coefficient. 𝑺𝒎-Is critical inhibitor 

concentration coefficient. 

Given: µ = 0.82h-1, µmax = 0.003h-1, S = 100𝑚𝑔𝐿−1, 𝐾𝑆 = 

99.63𝑚𝑔𝐿−1 

Using the Han-Levenspiel equation 3.6: the (𝑺𝒎) - 

substrate concentration for Banana fruit waste was 

calculated: 

𝑺𝒎 = 100.75 ± 3.67𝑚𝑔𝐿−1  

Using the same equations (3.6) above, the critical 

inhibitor concentration coefficient 

(𝑺𝒎) results for all the fruit waste samples collected 

from markets in Nairobi County, Kenya, for this study 

were calculated and tabulated in Table 3 below. 

 

Table 3: critical inhibitor concentration coefficient for 

all the fruit waste samples 

 
It is evident in this study (Table 3) that all the 

experiments stopped after each fruit was biodegraded 

to up to individual fruit critical inhibitor concentration 

coefficient (𝑺𝒎) at different times. Banana fruit waste, 

for example, was exhaustively consumed by the 

microbes up to 100𝑚𝑔𝐿−1substrate concentration and 

the 0.75𝑚𝑔𝐿−1 substrate initially in the rumen fluid, 

which means the chemical reaction stopped 5 hours 
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after peaking at 408hours (17 days). The sample 

mixture stopped much earlier after peaking at 373hours, 

which could be attributed to the toxicity of individual 

fruits. Avocado stopped the reaction at 408.45hrs; 

mango fruit waste stopped at 408.49hrs; tomato stopped 

at 408.77hrs, and watermelon stopped the reaction at 

408.12hrs which were all attributed to acid inhibition 

hence causing microbial death. They proposed 

competitive inhibition, in which a substrate-like 

inhibitor attached to the enzyme's active site and 

blocked the substrate from binding. Uncompetitive 

inhibition occurs when an inhibitor only binds to the 

enzyme-substrate complex rather than the free enzyme. 

Thus decline in microbial growth, facilitating an end of 

chemical reaction in a microbial fuel cell. 

 A study by [28] reported that microbial growth 

stopped when the critical inhibitor concentration (𝑆𝑚) 

was reached, and they accounted for different 

inhibitions using the Han-Levenspiel model. 

Considered substrate inhibition by using four other 

models to estimate the kinetic parameters of substrate 

degradation based on the relationship between 

substrate concentration and the substrate degradation 

rate, power density, and output voltage in an anodic 

denitrified MFC (AD-MFC) [24]. Due to the flask's 

increasing partial pressure of hydrogen and 

simultaneous acid inhibition, their investigation found 

that high substrate concentrations initially indicated 

strong bio-hydrogen generation, but that this fell to 

lower levels [29]. This implies that during pilot-scale 

investigations and continuous bio-hydrogen 

generation, the ideal carbon source levels in bioreactors 

are crucial. Failure to do so may have an impact on the 

microorganism's rate of growth, special substrate usage 

speed, enzyme activity, and general process yield. As a 

result, the liquid phase substrate (glucose) 

concentration must be regulated at optimal levels to 

prevent the formation of volatile fatty acids and the 

emergence of substrate inhibitions [30].  

Given that the mixture generated the lowest (𝑆𝑚) value, 

the Critical inhibitor concentration (𝑆𝑚) values showed 

that while setting up MFC chambers for optimal 

voltage output, it may be necessary to segregate solid 

waste. Bacteriological studies are necessary here to 

describe dominant anaerobic consortia responsible for 

bio-hydrogen formation, given the work's practicality. 

In general, kinetic models are used to investigate and 

evaluate the metabolic features of defined cultures. 

3.2. Multivariate Data Analysis (ANOVA) for market 

fruit wastes 

All the statistical analyses were performed with JMP 11 

(SAS Institute Inc., NC, and USA). The Analysis of 

Variance (ANOVA) and student's t-test at a 95% 

confidence level was conducted, and statistical 

significance was defined as a value of p˂0.05. Note: 

Treatment-Is a fruit sample (Fruit waste). 

3.2.1. Fruit (Treatment) against Voltage output 

The data were subjected to ANOVA to test the 

significant difference between the various market fruit 

wastes. Further, an inspection of the correlation 

probability in which the diagonal shows the 

correlation of each variable with itself, while the off-

diagonal values show the correlation at the intersection 

and scatter plot matrix revealed the correlation 

coefficients between the variables obtained from the 

analysis. As shown in Figure 7, the differences in the 

mixture of fruits, banana, and tomato samples were 

significantly different, indicating that other factors 

such as temperature, pressure, substrate preparation, 

etc., were affecting the reaction. 
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Figure 7 : Friut waste (Treatment) versus Voltage 

output 

ANOVA findings in Table 4 showed a significant 

difference in banana, tomato, and a mixture of fruits 

waste. 

Table 4 : ANOVA test for market fruit wastes Voltage 

 

3.2.2. Fruit (Treatment) against Current output 

Figure 8 Illustrates dot-plot and confidence intervals 

for each fruit waste for current output for market fruit 

waste. The mixture and banana samples showed a 

significant difference in terms of the current 

production. The results illustrated that, just like in the 

kinetic models discussed above. The mixture sample 

generated low output, attributed to the toxicity of 

individual fruit waste in the mix.  

 

Figure 8 : Fruit waste (Treatment) against Current 

output 

ANOVA findings in Table 5 showed that the difference 

in fruit waste mixture and banana samples was 

significant, just like in voltage output, indicating that 

other factors such as temperature, pressure, etc., were 

affecting the reaction. The results clearly illustrated 

that segregation of fruit wastes before experimenting 

would be beneficial. 

Table 5: ANOVA test for market fruit wastes Current 

 

3.2.3. Fruit (Treatment) against Power output 

A visualized dot-plot and confidence intervals for 

each treatment against power output for market fruit 

waste are shown in Figure 9. 

 

Figure 9: Fruit waste (Treatment) versus Power output 

ANOVA findings in Table 6 show all levels were 

connected by the same letter indicating there is no 

significant difference in all the fruit wastes in power 

output, therefore suggesting that there is a possibility 

of generating electricity from fruit waste. 
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Table 6: ANOVA test for market fruit wastes Power 

                     Connecting Letters Report 

Level   Mean (mW)  

Mango     A  0.0036±0.001 

Watermelon     A  0.0036±0.001 

Banana     A  0.0035±0.001 

Mixture     A  0.0034±0.001 

Avocado     A  0.0032±0.002 

Tomato     A  0.0029±0.002 

Levels not connected by the same letter are 

significantly different. 

Figure 10 below shows the Correlation probability and 

Scatterplot matrix for Banana fruit waste for Voltage, 

current, power, power density, and current densities 

output. Values are coloured according to the magnitude 

of their correlation; for correlation probability, 

diagonal values show each variable's correlation with 

itself, while the off diagonal values are correlated at the 

intersection of variables. The positive correlation 

values are bold black, and negative values are red, 

indicating that an increase in one variable is associated 

with a decrease in the other variable. The brown colour 

shows how close the values are to zero, a correlation 

with no linear association between the variables within 

the samples.  

 

 

Figure 10 : Correlation and Scatterplot matrix for 

Banana fruit waste output 

Despite statistical significance in some samples, 

Pearson correlation coefficients (r) were generally poor, 

indicating a limited predictive capacity of one variable 

versus another but a high possibility of linear 

correlations. The p-value in all the output in this study 

is higher than P˂0.05, which is not significant relative 

to pure error, suggesting that the fitting model 

accurately describes the experimental data. Other fruit 

waste in this study, just like banana fruit waste, was 

computed the same way. 

IV.  CONCLUSION 

Different electrochemical and microbial kinetic 

techniques can simplify the complexity of the MFC 

system in mathematical model form. Input variables 

(such as operating conditions or design variations) can 

be mathematically optimized, and the outcomes of that 

optimization can be validated using experimental data. 

The present study underlined the following finding: 

Bacteria's growth and reduction kinetics can be 

modelled using various models available in the 

literature. Literature survey has shown that multiple 

models have been found optimum in different systems 

for the same compound. Hence, a comprehensive 

modeling exercise was carried out on available 
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published works to demonstrate this observation. In 

this work, we demonstrated based on a kinetics model 

that the Han- Levenspiel model suggests after 

consumption of the 100𝑚𝑔. 𝐿−1 substrate together with 

the 0.75 𝑚𝑔. 𝐿−1  substrate initially from the rumen 

fluid for banana and 91.09±3.36𝑚𝑔. 𝐿−1 for the mixture 

of fruit wastes, the chemical reaction stops, and the 

production of electrons and protons, indicating the 

microbes' activities are inactive. Findings strongly 

supported by statistical model; multivariate data 

analysis revealed a significant difference in banana and 

a mixture of waste, though showing no significant 

difference in power outputs in all the collected market 

fruit waste (treatments). 

.  

Recommendation 

Optimization of inoculum, process parameters, 

substrates, evaluation of performance, and economics 

of continuous bio-hydrogen generation systems should 

be the focus of future research in this subject 

(bioreactors). 
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