

Standard Electrode Potential of Hg | Hg₂Cl₂(s), Cl⁻ Electrode in Dioxane-Water Media at a Number of Temperature and the Related Thermodynamic Quantities Md. Shamsuddin¹, Anil Kumar Chaohadia¹, A. K. Ghosh²

¹Maharana Pratap Govt. P.G. College, Chittorgarh, Rajasthan, India ²Department of Chemistry, Patna University, Science College, Patna, Bihar, India

ARTICLEINFO	ABSTRACT					
Article History: Accepted: 15 March 2023 Published: 30 March 2023	From e.m.f measurements of cells (C-1) and (C-2) it has been established that modified Davies equation is valid in dioxane-water media at least upto 30% dioxane by weight. E^0_m values of Hg Hg ₂ Cl ₂ (s), Cl ⁻ electrode in dioxane-water media having 10, 20 and 20% dioxane by weight and the corresponding thermodynamic					
Publication Issue Volume 8, Issue 2 March-April-2023	 30% dioxane by weight and the corresponding thermodynamic parameters have been determined at 288.15, 298.15, 308.15 and 318.15 ⁰K. (Pt),H₂ (1 atm) HCl(m₁) x% Dioxane (100-x)% H₂O, Hg₂Cl₂(s) Hg (C-1) (Pt),H₂ (1 atm) HCl(m₁) BaCl₂(m₂)x% Dioxane (100-x)% H₂O, Hg₂Cl₂(s) Hg 					
Page Number	(C-2)					
08-12	Keywords : Standard electrode potential, modified Davies equation, dioxane-water, mercuric-mercuric chloride electrode, thermodynamic quantities.					

I. INTRODUCTION

 $E^{0_{m}}$ values of Hg | Hg₂Cl₂(s), Cl⁻ electrode in dioxane-water have been reported by Schwabe and Schwenke¹ at one temperature only (298.15^oK) that too after using Davies equation for activity coefficient. The use of this equation has been criticized by many workers²⁻⁶. We need the values of $E^{0_{m}}$ of this electrode at different temperatures in connection with our projected study. Thermodynamics of this electrode in many mixed aquoorganic media also are not known, so the cells (C-1) and (C-2) were set up.

 $(Pt)_{1}H_{2} (l atm) \mid HCl(m_{1}) x\% Dioxane (100-x)\% H_{2}O, Hg_{2}Cl_{2}(s) \mid Hg \qquad \dots (C-1)$

 $(Pt)_{1}H_{2}(l atm)|HCl(m_{1}) BaCl_{2}(m_{2})x\% Dioxane x\% Dioxane (100-x)\% H_{2}O, Hg_{2}Cl_{2}(s)|Hg \dots (C-2)$

(where x = 10, 20, and 30) to find the E^{0_m} values Hg | Hg₂Cl₂(s), Cl⁻ electrode in these media. Incidentally we wanted to confirm the validity of modified Davies equation for activity of ions in these media.

Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

RESULTS AND DISCUSSION

The e.m.f. of the cells (C-1) and (C-2) is given by

$$E = E^{0} - k \log m_{H}.m_{c1} - k \log \gamma_{H} \cdot \gamma_{C1} \qquad ...(1)$$

$$(k = 2.3026RT / F)$$

which after substitution of equation (2)

$$\log Y_{i} = -((AZ^{2}_{i}\sqrt{\mu})/(1+\sqrt{\mu})) + \beta_{i}\mu \qquad ...(2)$$

and rearrangement, gives

E + k log m_H. m_{Cl} - (kAZ²_i $\sqrt{\mu}$)/ (1 + $\sqrt{\mu}$) = E⁰ - k βμ ...(3)

putting the L.H.S. = y, the equation (3) becomes

$$y = E^0 - k \beta \mu \qquad \dots (4)$$

HCl and BaCl₂ dissociate completely, so the value of ionic strength, μ , in cells (C-1) and (C-2) are given by m₁ and (m₁ + 3m₂). All the quantities of L.H.S. of equation (3) being known (A and k from literature¹³) y's were plotted against μ 's at all temperatures for all the solvent system studied. All the plots were found to be linear, the intercept giving the values of E⁰_m and slopes giving the value of β . The value of E⁰_m against different mass % of dioxane at different temperatures are recorded in Table 1. The E⁰_m values at different temperature fit in the equation (5) for the mixed solvent under study

$$E^{0}_{m} = a + b(t-25) + c(t-25)^{2} \qquad \dots (5)$$

The values of 'a', 'b' and 'c' have been determined by the least square method and are recorded in Table 2. The recorded values of E^{0_m} from equation (5) agree with experimental values within 0.0003 for 10% and within 0.00001 for 20 and 30%. For >30% dioxane by weight, deviation occurs, so we did not proceed further with modified Davies equation.

The mean activity coefficient values (χ ±) of hydrochloric acid in dioxane-water mixtures at 288.15, 298.15, 308.15 and 318.15 °K calculated using equation (2) agreed closely with the recorded values. Linearity of the plots shows the constancy of β values upto μ <u>ca</u> 0.1 mol kg⁻¹. The constancy of β values obtained with cells (C-1) and (C-2) and close agreement of the values β determined with those found earlier in this laboratory indicates the validity of equation (2) over the temperature and concentration range of the solvents studied.

The thermodynamic quantities $\Delta G^{0},$ ΔH^{0} and ΔS^{0} for the overall reaction

 $\frac{1}{2}$ H₂ + $\frac{1}{2}$ Hg₂Cl₂(s) \longrightarrow Hg(l) + HCl ...(6)

in each of the dioxane-water media at each of the temperatures considered have been calculated by using wellknown relationships from equation (5). These are recorded in Table 3.

It will be seen from the table that ΔG^0 values at all temperatures and concentrations of the organic component in the media are negative having almost constant values, the values are increasing slightly both with increase of temperature and increase of the concentration of the organic component in the media. It appears therefore that reaction (eq. 6) is spontaneous and is slightly more facilitated both by rise of temperature and rise in the concentration of the organic component in the media. The values of ΔH^0 in all cases are negative indicating the process to be exothermic and the products formed to be more stable the stability and exothermicity increasing steadily with rise in temperature. ΔH^0 seem to decrease with increase in concentration of the organic component from 10 to 20%, but thereafter ΔH^0 values seem to attain almost constant values indicating perhaps that the above reaction is completed in <u>ca</u> 20% of the organic component of the media. This idea gains additional support from a perusal of the ΔS^0 values. ΔS^0 values are negative throughout indicating the system remains more ordered; the negativity and hence orderliness increasing steadily with rise in temperature. However again ΔS^0 values at 20° and 30% of dioxane content in the media are almost the same at all temperatures.

These thermodynamic data can be systemized and explained as follows in the light of Frank and Wen's ideas¹⁴. Water may be supposed to be an equilibrium mixture of monomeric H₂O molecules and three dimensional network of H- bonded tetra coordinated H₂O molecules.

$$(H_2O)_m \iff (H_2O)_C \qquad \dots (7)$$

As the reaction (6) proceeds to the R.H.S., H^+ and Cl^- are solvated more and more by these monomeric H_2O molecules liberating heat the region A of Frank and Wen gets enhanced decreasing region B, the system gets ordered. When dioxane is added to the media, dioxane being aprotic it will combine with the proton part of $H_2O(m)$, causing further orderliness and exothermicity of heat. It appears that both these processes get saturated at <u>ca</u> 20% of dioxane component of the media.

EXPERIMENTAL

All the chemicals were of AR/GR grade, still their purity were analytically determined by standard methods⁷. Stock solution of hydrochloric acid and HCl + BaCl₂ in approximately equimolar proportion was prepared. Experimental solutions were prepared by appropriate dilution of the stock solution. The stoichiometric molalities were correct to micromol kg⁻¹. Dioxane was purified following the method of Das and coworkers⁸. The Hg | Hg₂Cl₂ (s), Cl⁻ electrode was prepared and set up as recommended by Hills and Ives except applying the silicone treatment as reported from this laboratory earlier⁹⁻¹⁰.

All the cells were set up in duplicate. The e.m.f. reading of the duplicate cells attained constant value after 3 to 4 hours of their introduction in the thermostat and slowly bubbling H_2 gas and these e.m.f. values remained constant at least over 1½ hours thereafter. The e.m.f. of the duplicate cells agreed generally within 0.02 mV, the mean of which after necessary correction for barometric pressure, vapour pressure band bubbler depth¹¹

10

were recorded. The vapour pressure of the mixed solvent at each temperature was calculated by using Akerl of equation¹². The e.m.f. correction, ΔE was added to observe e.m.f. values to get the corrected e.m.f. values.

TABLE - 1

The value of standard Electrode Potential (E⁰m) of Hg | Hg₂Cl₂(s), Cl⁻ Electrode in Molal Scale in abs. Volt.

Temp. ⁰K	10% (m/m) D-W	20% (m/m) D-W	30% (m/m) D-W		
288.15	0.25960	0.25715	0.25270		
298.15	0.25583	0.25012	0.24467		
308.15	0.25018	0.24248	0.23530		
313.15	0.24233	0.23684	0.22567		

m/m = mass/mass

D-W = Dioxane-water

TABLE - 2

Value of a, b, c calculated by equation $E^{0}_{m} = E^{0}_{25} + b(t-25) + c(t-25)^{2}$

Mass % Dioxane	a/V	-b x 104 VK-1	-C x 10 ⁶ V K ⁻²	
10	0.25583	2.12	7.07	
20	0.25012	7.595	3.75	
30	0.24467	7.595	3.75	

TABLE - 3

Thermodynamic Functions for the Reaction:

	10% (w/w) D-W			20% (m/m) D-W			30% (m/m) D-W		
Temp. ºK	-ΔG⁰ (kJ/mol)	-ΔS ⁰ x 10 ³ (kJK ⁻ ¹ mol ⁻¹)	-ΔHº (kJ/m ol)	-∆Gº (kJ/mol)	-ΔS ⁰ x 10 ³ (kJK ⁻ ¹ mol ⁻¹)	-∆H⁰ (kJ/mol	-∆G⁰ (kJ/mol)	-ΔS ⁰ x 10 ³ (kJK ⁻ ¹ mol ⁻¹)	-∆H⁰ (kJ/mol)
288.15	25.048 ±0.004	6.95 ±0.11	27.04 ±0.04	24.619 ±0.004	66.04 ±0.11	43.65 ±0.04	24.382 ±0.004	66.04 ±0.11	43.41 ±0.04

$$\frac{1}{2}H_2 + \frac{1}{2}Hg_2Cl_2(s) \longrightarrow Hg(l) + HCl$$

11

298.15	24.877	20.45	30.97	24.133	73.28	45.98	23.607	73.28	45.45
	±0.004	±0.12	±0.04	±0.004	±0.12	±0.04	±0.004	±0.12	±0.04
308.15	24.218	33.961	34.68	23.316	80.51	48.20	22.703	80.51	47.51
	±0.004	±0.13	±0.04	±0.004	±0.13	±0.04	±0.004	±0.13	±0.04
318.15	23.382 ±0.0.00 4	47.47 ±0.13	38.48 ±0.04	22.852 ±0.004	87.75 ±0.13	50.77 ±0.04	21.774 ±0.004	87.75 ±0.13	49.61 ±0.04

 ΔG^0 , ΔH^0 and ΔS^0 ' Δ are in kJmol⁻¹, kJmol⁻¹ and kJK⁻¹mol⁻¹, respectively.

D-W = Dioxane-water

II. ACKNOWLEDGEMENT

The authors are thankful to UGC New Delhi for providing UGC-JRF fellowship.

III. REFERENCES

- [1]. R. R. Schwabe and W. Schwenke, Z. Elektrochem., 1959, 63, 441.
- [2]. G. Sahu and B. Prasad, J. Indian Chem. Soc., 1969, 45, 233.
- [3]. A. K. Sinha, J. C. Ghosh and B. Prasad, J. Indian Chem. Soc., 1974, 51, 586.
- [4]. B. Prasad, J. Indian Chem. Soc., 1977, 54, 488.
- [5]. A. Gupta, Ph.D. Thesis, Patna University, 1986.
- [6]. B. M. Prasad, Ph.D. Thesis, Patna University, 1986.
- [7]. G. D. Pinching and R. G. Bates, J. Nat. Bur. Stand., 1948, 40, 405.
- [8]. S. C. Mohanty, U. C. Mishra, K. C. Singh, P. K. Das, J. Indian Chem. Soc., 1973, 50, 302.
- [9]. Sanjay Ghosh, Ph.D. Thesis, Patna University, 1992, 46.
- [10]. Madhu Rani, Ph.D. Thesis, Patna University, 1992, 46.
- [11]. D. J. G. Ives, G. J. Janz, Reference Electrode, 1961, 189.
- [12]. G. Akerlof, O. A. Short, J. Am. Chem. Soc., 1936, 58. 1241.
- [13]. B. K. Das, P. K. Das, J. Chem. Soc., Faraday Trans. I, 1978, 74, 22.
- [14]. H. S. Frank, W. Y. Wen, Discussion Faraday Soc., 1957, 24, 133.

Cite this article as :

Md. Shamsuddin, Anil Kumar Chaohadia, A. K. Ghosh, "Standard Electrode Potential of Hg | Hg2Cl2(s), Cl-Electrode in Dioxane-Water Media at a Number of Temperature and the Related Thermodynamic Quantities", International Journal of Scientific Research in Chemistry (IJSRCH), ISSN : 2456-8457, Volume 8, Issue 2, pp.08-12, March-April.2023. doi : https://doi.org/10.32628/IJSRCH23823 URL : https://ijsrch.com/IJSRCH23823