Comparative Study of Metal Extraction in Different Acid Concentration of Brass Effluent
DOI:
https://doi.org/10.32628/IJSRCH24933Keywords:
Metal Extraction, Brass Effluent, Metal Values, Hydrometallurgical RecoveryAbstract
Metal values including Copper (Cu), Lead (Pb) and Zinc (Zn) have been effectively recovered from brass melting slag through hydrometallurgical treatments employing acid leaching methods utilizing hydrochloric acid (HCl), nitric acid (HNO3), and sulfuric acid (H2SO4). The optimization of recovery efficiency was investigated by varying the concentrations of these acid solutions. Acidic leachants proved highly effective, particularly under elevated temperatures, with percent extraction increasing in the order of nitric, hydrochloric, and sulfuric acid. The proposed method achieved a remarkable recovery efficiency exceeding 96%. Furthermore, the recovered Copper and Zinc products meet standard specifications.
References
M.R. Broadley, P.J. White, J.P. Hammond, New Phytol. 173 (2007) 677-702. https://doi.org/10.1111/j.1469-8137.2007.01996.x DOI: https://doi.org/10.1111/j.1469-8137.2007.01996.x
M.K. Jha, A. Kumari, A.K. Jha, Waste Management. 33 (2013) 1890-1897. https://doi.org/10.1016/j.wasman.2013.05.008 DOI: https://doi.org/10.1016/j.wasman.2013.05.008
M.K. Jha, V. Kumar, R.J. Singh, Resour. Conserv. Recy. 33 (2001) 1-22. https://doi.org/10.1016/S0921-3449(00)00095-1 DOI: https://doi.org/10.1016/S0921-3449(00)00095-1
I.M. Ahmed, A.A. Nayl, J.A. Daoud, J Saudi Chem Soc. 20 (2016) S280-S285. https://doi.org/10.1016/j.jscs.2012.11.003 DOI: https://doi.org/10.1016/j.jscs.2012.11.003
E. Rudnik, G. Włoch, L. Szatan, Metall Res Technol. 115 (2017) 110. https://doi.org/10.15244/pjoes/78039 DOI: https://doi.org/10.1051/metal/2017076
S.M. Pé rez-Moreno, M.J. Gá zquez, G. Rí os, I. Ruiz-Oria, J.P. Bolí var, J. Clean Prod. 194 (2018) 383-395. https://doi.org/10.1016/j.jclepro.2018.05.090 DOI: https://doi.org/10.1016/j.jclepro.2018.05.090
K. S. NG, I. Head, G.C. Premier, K. Scott, E. Yu, J. Lloyd, J. Sadhukhan, Resour. Concerv. Recy. 113 (2016) 88-105. https://doi.org/10.1016/j.resconrec.2016.05.013 DOI: https://doi.org/10.1016/j.resconrec.2016.05.013
S.I.E. Dessouky, Y.A. El-Nadi, I.M. Ahmed, E.A. Saad, J.A. Daoud, Chem Eng Process. 47 (2008) 177-183. https://doi.org/10.1016/j.cep.2007.03.002 DOI: https://doi.org/10.1016/j.cep.2007.03.002
K. Shang, Y.Z. Yang, J.X. Guo, J Radioanal Nucl Ch. 291 (2012) 629-633. https://doi.org/10.1007/s10967-011-1443-x DOI: https://doi.org/10.1007/s10967-011-1443-x
S. Wang, JOM. 58 (2006) 47-50. https://doi.org/10.1007/s11837-006-0201-y DOI: https://doi.org/10.1007/s11837-006-0201-y
Y. Yang, S. Song, F. Jiang, J Clean Prod. 186 (2018) 123-130. https://doi.org/10.1021/acsenergylett.8b01233 DOI: https://doi.org/10.1016/j.jclepro.2018.03.147
Y. Huang, L. Chen, H. Wang, J Radioanal Nucl Ch. 291 (2012) 777-785. https://doi.org/10.1016/j.watres.2006.04.031 DOI: https://doi.org/10.1007/s10967-011-1351-0
Q. Wang, L. Chen, Y. Sun, J Radioanal Nucl Ch. 291 (2012) 787-795. https://doi.org/10.1007/s10967-011-1352-z DOI: https://doi.org/10.1007/s10967-011-1352-z
B.R. Reddy, S.V. Rao, K.H. Park, Miner Eng. 22 (2009) 500-505. https://doi.org/10.1016/j.mineng.2009.01.002 DOI: https://doi.org/10.1016/j.mineng.2009.01.002
Downloads
Published
Issue
Section
License
Copyright (c) 2024 IJSRCH
This work is licensed under a Creative Commons Attribution 4.0 International License.