Comparative Study of Metal Extraction in Different Acid Concentration of Brass Effluent

Authors

  • B. V. Trivedi Department of Chemistry, D.K.V. Arts & Science College, P. N. Marg, Jamnagar, Gujarat, India Author
  • P. S. Oza Department of Chemistry, D.K.V. Arts & Science College, P. N. Marg, Jamnagar, Gujarat, India Author
  • M. R. Katesia Department of Chemistry, D.K.V. Arts & Science College, P. N. Marg, Jamnagar, Gujarat, India Author
  • J. H. Pandya Department of Chemistry, D.K.V. Arts & Science College, P. N. Marg, Jamnagar, Gujarat, India Author

DOI:

https://doi.org/10.32628/IJSRCH24933

Keywords:

Metal Extraction, Brass Effluent, Metal Values, Hydrometallurgical Recovery

Abstract

Metal values including Copper (Cu), Lead (Pb) and Zinc (Zn) have been effectively recovered from brass melting slag through hydrometallurgical treatments employing acid leaching methods utilizing hydrochloric acid (HCl), nitric acid (HNO3), and sulfuric acid (H2SO4). The optimization of recovery efficiency was investigated by varying the concentrations of these acid solutions. Acidic leachants proved highly effective, particularly under elevated temperatures, with percent extraction increasing in the order of nitric, hydrochloric, and sulfuric acid. The proposed method achieved a remarkable recovery efficiency exceeding 96%. Furthermore, the recovered Copper and Zinc products meet standard specifications.

References

M.R. Broadley, P.J. White, J.P. Hammond, New Phytol. 173 (2007) 677-702. https://doi.org/10.1111/j.1469-8137.2007.01996.x

M.K. Jha, A. Kumari, A.K. Jha, Waste Management. 33 (2013) 1890-1897. https://doi.org/10.1016/j.wasman.2013.05.008

M.K. Jha, V. Kumar, R.J. Singh, Resour. Conserv. Recy. 33 (2001) 1-22. https://doi.org/10.1016/S0921-3449(00)00095-1

I.M. Ahmed, A.A. Nayl, J.A. Daoud, J Saudi Chem Soc. 20 (2016) S280-S285. https://doi.org/10.1016/j.jscs.2012.11.003

E. Rudnik, G. Włoch, L. Szatan, Metall Res Technol. 115 (2017) 110. https://doi.org/10.15244/pjoes/78039

S.M. Pé rez-Moreno, M.J. Gá zquez, G. Rí os, I. Ruiz-Oria, J.P. Bolí var, J. Clean Prod. 194 (2018) 383-395. https://doi.org/10.1016/j.jclepro.2018.05.090

K. S. NG, I. Head, G.C. Premier, K. Scott, E. Yu, J. Lloyd, J. Sadhukhan, Resour. Concerv. Recy. 113 (2016) 88-105. https://doi.org/10.1016/j.resconrec.2016.05.013

S.I.E. Dessouky, Y.A. El-Nadi, I.M. Ahmed, E.A. Saad, J.A. Daoud, Chem Eng Process. 47 (2008) 177-183. https://doi.org/10.1016/j.cep.2007.03.002

K. Shang, Y.Z. Yang, J.X. Guo, J Radioanal Nucl Ch. 291 (2012) 629-633. https://doi.org/10.1007/s10967-011-1443-x

S. Wang, JOM. 58 (2006) 47-50. https://doi.org/10.1007/s11837-006-0201-y

Y. Yang, S. Song, F. Jiang, J Clean Prod. 186 (2018) 123-130. https://doi.org/10.1021/acsenergylett.8b01233

Y. Huang, L. Chen, H. Wang, J Radioanal Nucl Ch. 291 (2012) 777-785. https://doi.org/10.1016/j.watres.2006.04.031

Q. Wang, L. Chen, Y. Sun, J Radioanal Nucl Ch. 291 (2012) 787-795. https://doi.org/10.1007/s10967-011-1352-z

B.R. Reddy, S.V. Rao, K.H. Park, Miner Eng. 22 (2009) 500-505. https://doi.org/10.1016/j.mineng.2009.01.002

Downloads

Published

22-06-2024

Issue

Section

Research Articles

How to Cite

Comparative Study of Metal Extraction in Different Acid Concentration of Brass Effluent. (2024). International Journal of Scientific Research in Chemistry, 9(3), 17-23. https://doi.org/10.32628/IJSRCH24933

Similar Articles

You may also start an advanced similarity search for this article.