Phytochemical Investigation, Antioxidant, Antibacterial and Adaptogenic Medicinal Potential of Vidanga (Embelia ribes)

Authors

  • Mulchand Shende Department of Pharmaceutics, Government College of Pharmacy, Kathora Naka, Amravati, Maharashtra, India Author https://orcid.org/0000-0002-8932-4663
  • Anil Savali Pharmacy Department, Government Polytechnic, Abhyudhya Nagar, Ratnagiri, Maharashtra, India Author

Keywords:

Embelia Ribes Extracts, Antioxidant, Antibacterial, Antistress Activity, Forced Swim Test

Abstract

Embelia ribes known for its medicinal properties, has been recognized since ancient times due to its association with oxidative stress, preventing cognitive decline. Studies were conducted to evaluate the antioxidant, antimicrobial, and non-invasive antistress activities on rats of Vidanga (Embelia ribes) ethanolic extract. The extracts were tested for antibacterial activity against Staphylococcus aureus and Escherichia coli, and their antioxidant capacity was assessed by inhibiting lipid peroxidation free radicals. The antistress properties of extract were tested in rats at doses of 100 and 300 mg/kg using a forced swim stress test. The study measured urinary excretion levels of vanillylmandellic acid, 5-hydroxyindoleacetic acid, homovanillic acid, and ascorbic acid in all groups under normal and stress conditions. The extract of Embelia ribes showed a high total phenolic content (16.38 ± 0.24 mg GAE/g DW) and a low total flavonoid content (1.32±0.2 mg RE/g DW). The minimum inhibitory concentration of the Embelia ribes extract was found 1000 ppm for Staphylococcus aureus and 1250 ppm for Escherichia coli. The ethanolic extracts of Embelia ribes revealed greatest antioxidant activity in terms of 50% lipid peroxides radical scavenging activity (249.5±0.25 µg/ml) as compare to ascorbic acid (229.4±0.98 µg/ml), needed for the same effect. The administration of extract at doses of 100 and 300 mg/kg led to a reduction in urinary metabolites levels. Research shows Embelia ribes extracts have a highly effective against microbial growth, positive correlation with antioxidant and antistress properties in rodent subjects, indicating their potential as a natural antimicrobial, antioxidant and adaptogenic agent.

References

Phaniendra, D. B. Jestadi, and Periyasamy, L. Indian J. Clin. Biochem. 30, 11-26, (2015). DOI: 10.1007/s12291-014-0446-0

G. Pizzino, N. Irrera, M. Cucinotta, G. Pallio, F. Mannino, V. Arcoraci, F. Squadrito, D. Altavilla, and A. Bitto. Oxid Med Cell Long. 1, 8416763, (2017). DOI: 10.1155/2017/8416763

S. Skrovankova, L. Misurcova, and L. Machu. Advances in food and nutrition research. 67, 75-139, (2012). DOI: 10.1016/B978-0-12-394598-3.00003-4

S. Das, G. Nandi, and L. K. Ghosh. J Pharm Sci Res. 11(6), 2139–2147, (2019).

F. Artes, P. Gomez, and F. Artes-Hernandez. Food Sci. Technol. Int., 13, 177-188, (2007).

R. V. Tauxe. Food Environmental Sanitation, 17, 788–795, (1997).

Levi Lennart. Ed. Stress and distress in response to psychosocial stimuli: laboratory and real-life studies on sympatho-adrenomedullary and related reactions. Elsevier, (2016).

E. K. Kilari, L. S. Rao, S. Sreemanthula, and P. K. Kola. Environ Exp Biol. 29(17), 25-31, (2015).

E. J, Smid, and L. G. M. Gorris. Natural antimicrobials for food preservation. In M. Shafiurr Rahman (Ed.), Handbook of food preservation, New York: Marcel Dekker, 285–308, (1999).

D. L. Madavi, and D. K. Salunkhe. Toxicological aspects of food antioxidants, Food antioxidants, New York: Marcel Dekker Inc, 266, (1995).

X. Zhou, Z. Yuping, H. Zhao, J. Liang, Y. Zhang Y, and S. Shi. Food Chemistry 186, 63–68, (2015).

S. Mandal, B. Hazra, R. Sarkar, S. Biswas, and N. Mandal. Evidence-based Complementary and Alternative Medicine, (2011).

M. Giri, P. M. Rao, and K. N. Jayaveera. Int J Pharm Sci Res, 8(1), 62-65, (2011). .

Nemudzivhadi, and P. Masoko. Evidence‐Based Complementary and Alternative Medicine. 1, 625961, (2014).

M. Kiełczykowska, and I. Musik, Oxid. Med. Cell. Longev. 3, 1-55, (2020).

C. Z. Nikolovska, L. Xu, Z. Hu, Y. Tomita, P. Li, P.P. Roller, R. Wang, X. Fang, R. Guo, M. Zhang, M. E. Lippman, D. Yang, and S. Wang. J Med Chem. 47:2430–2440, (2004).

C. Francesco, R. Miriam, K. Sarjit, G.V. Emmanuel, M. Nora, B. Stuart, and D. S. Joanna. Antioxidants. 9(5), 382, (2020).

Nongbet, M. Zaki Shamim, B. P. Panda. Biological Forum–An International Journal, 15(6), 450-460, (2023).

Anonymous, The Ayurvedic pharmacopoeia of lndia, Ministry of Health and Family Welfare, Govt. of lndia. New Delhi, 1(1), 163-165, (2001).

L. Singleton, J. A. Rossi. Am J Enol Viticult. 16, 144–158, (1965).

Y. Chang, H. Wen, and J. Chern. J Food Drug Anal. 10,178–182, (2002).

OECD Guideline for Testing of Chemicals. Acute Oral Toxicity-Fixed Dose Procedure. OECD/OEDC, (2001).

G. K. Jayaprakasha, P. S. Negi, Sagarika, Sikder, L. Jaganmohan Rao, and K. K. Sakariah. Zeitschrift fur Naturforschung C 55, 11-12 (2000).

H. S. Choi, H. S. Song, H. Ukrda, and M. Sawamura. Journal of Agricultural and Food Chemistry, 48, 4156–4161, (2000).

J. M. McCord, and I. Fridovich. Journal of Biological Chemistry, 244(22), 6056-6063, (1969).

H. Ohkawa, N. Ohishi, and K. Yagi. Analytical biochemistry, 95(2), 351-358, (1979).

M. Shende, A. Savali1, and S. B. Chandrasekhar. Research J. Pharm. and Tech. 16(10), 4751-4758, (2023).

J. H. Roe, and C. A. Kuether. Journal of Biological Chemistry.147, 399-07, (1943).

S. Suriyaprom, P. Mosoni, S. Leroy, T. Kaewkod, M. Desvaux, and Y. Tragoolpua. Antioxidants. 11(3), 602, (2022). DOI: 10.3390/antiox11030602

Marinova, F. Ribarova, M. Atanassova. J Univ Chem Tech Metall. 40, 255–60, (2005).

J. Okpuzar, H. Ogbunugafor, G. K. Kareem, and M. N. Igwo-Ezikpe. Res J Phytochem. 3, 68–76, (2009).

S. V. Bhat, B. A. Nagasampagi, M. Sivakumar. Chemistry of natural products. New Delhi: Narosa Publishing House, (2005).

S. Shadma, and A. Naheed. India. Int J Pharm Biol Sci. 9, 17–20, (2014). DOI: 10.9790/3008-09231720.

T. Sulaiman, and I. Balachandran. Indian J Pharm Sci. 74, 258–260, (2012). DOI: 10.4103/0250-474x.106069.

V. Kamble, U. Attar, S. Umdale, M. Nimbalkar, S. Ghane, and N Gaikwad. Physiology and Molecular Biology of Plants, 26(9), 1855–1865, (2020).

R. Thyloor. Journal of Medicinal Plants, 6(4), 41–43, (2018).

N. Radhakrishnan, A. Gnanamani, and A. B. Mandal. Biology and Medicine, 3(2), 1–7, (2011).

S. G. Rathi, V. H. Bhaskar, and P. G. Patel. Int J Pharm Biol Res. 1(1), 6-10, (2010).

T. Oki, M. Masuda, S. Furuta, Y. Nishibia, N. Terahara, I. Suda. Food Chem Toxicol. 67, 1752–6, (2002).

R. Baskar, V. Rajeswari, and T. S. Kumar. Indian Journal of Experimental Biology, 45,480-485, (2007).

J. K. Andersen. Nat. Rev. Neurosci. 5, S18-S25, (2004).

K. K. Shimada, K. Y. Fujikawa, and T. Nakamura. Journal Agricultural and Food Chemistry, 40, 945–948, (1992).

H. Kaur, and J. Perkins. The free radical chemistry of food additives. In O. I. Aruoma, & B. Halliwell (Eds.), Free radicals and food additives. London: Taylor and Francis Ltd. 17-35, (1991).

M. Ion. Acta Physiol Scand. 76, 393–395, (1969).

S. Gregory, and N. D. Kelly. Alternative Medicine Review. 4(4), 249-65, (1999).

J. Axelord, and T. D. Reisine. Science. 224(4648), 452-9, (1984). DOI: 10.1126/science.6143403.

S. Sreemantula, S. Nammi, R. Kolanukonda, S. Koppula, and K. M. Boini. BMC Complementary and Alternative Medicine. 5(1), 1-8, (2005). DOI: 10.1186/1472-6882-5-1

S. J. Lupien, F. Maheu, Tu M, Fiocco A and T. E. Schramek. Brain and Cognition. 65(3), 209-37, (2007). DOI: 10.1016/j.bandc.2007.02.007

G. A. Carrasco, and L. D. Van de Kar. European Journal of Pharmacology. 2003; 463:235-72, (2003). DOI: 10.1016/s0014-2999(03)01285-8

Downloads

Published

22-09-2024

Issue

Section

Research Articles

How to Cite

Phytochemical Investigation, Antioxidant, Antibacterial and Adaptogenic Medicinal Potential of Vidanga (Embelia ribes). (2024). International Journal of Scientific Research in Chemistry, 9(5), 08-21. https://ijsrch.com/index.php/home/article/view/IJSRCH24952

Similar Articles

You may also start an advanced similarity search for this article.