Design, Synthesis, Biological Evaluation and Molecular Dynamic Study of Oxadiazole Containing Some Novel Schiff Bases

Authors

  • Komal vitthal Gadhe M Pharmacy, Srinath College of Pharmacy Sambhajinagar, Pin code: 431001, Maharashtra, India Author
  • Manoj G. Damale PhD, Srinath College of Pharmacy Chh. Sambhajinagar, Pin code: 431001, Maharashtra, India Author
  • Rashmi S. Chouthe M Pharmacy, Srinath College of Pharmacy Sambhajinagar, Pin code: 431001, Maharashtra, India Author
  • Harshali A. Takale M Pharmacy, Srinath College of Pharmacy Sambhajinagar, Pin code: 431001, Maharashtra, India Author
  • Santosh D. Shelke PhD, Srinath College of Pharmacy Chh. Sambhajinagar, Pin code: 431001, Maharashtra, India Author
  • Mohd. Usman Mohhasiddique PhD, Shri Vile Parle Kelavani Mandal Dhule, Pin code: 424001, Maharashtra, India Author

Keywords:

antimicrobial activity, molecular docking, multi drug resistances, Schiff base

Abstract

Microbial resistance remains a significant risk and a prominent cause of death worldwide, although massive attempts were made to control infections. In an effort to develop biologically active antimicrobial agents in present study we have reported design, synthesis & biological evaluation and molecular dynamic study of oxadiazole containing novel Schiff bases. In order to increase biological activity and improve drug-likeness, oxadiazole moieties were purposefully added to Schiff base frameworks using bioisosteric replacement principle .The 1, 3, 4-oxadiazole moiety were used to design near about 100 derivatives, online tool FAFDrug4 were used to evaluate the drug-likeness screening. Molecular docking study was performed for their possible inhibitory action on microrgsnism using the PyRx software. The final Schiff base derivatives were obtained by condensation with different aromatic aldehydes with oxadiazole moiety by using zinc chloride as a catalyst the synthesis was performed by microwave irradiation.the present practical yield of obtained Schiff bases are ranging form 70-80%. The structures of the synthesized compounds were confirmed using spectroscopic techniques. The in vitro antimicrobial activity of the synthesized oxadiazole-based Schiff bases was evaluated against selected microbial strains..the top ten Schiff base have exacellaent antifungal activity and moderate antibacterial activity. the Schiff bases VKG-30 and VKG-70 demonstrated moderate antibacterial activity .Furthermore molecular dynamics simulations were also conducted to assess the stability and behavior of ligand-receptor complexes for that VKG-70 schiff bases and dhn protein was used. The integration of synthetic chemistry with computational tools provides valuable insight into the structure-activity relationships of these novel oxadiazole-Schiff base hybrids, offering promising leads for future drug development.

References

Wellcome Collection. “Antimicrobial Resistance : Tackling a Crisis for the Health and Wealth of Nations / the Review on Antimicrobial Resistance Chaired by Jim O’Neill.” Accessed March 19, 2025. https://wellcomecollection.org/works/rdpck35v.

Hauser, Alan R. Antibiotic Basics for Clinicians: The ABCs of Choosing the Right Antibacterial Agent. Lippincott Williams & Wilkins, 2012.

Antimicrobial resistance : tackling a crisis for the health and wealth of nations / the Review on Antimicrobial Resistance chaired by Jim O’Neill. | Wellcome Collection. https://wellcomecollection.org/works/rdpck35v/download (accessed 2025-05-29).

Antimicrobial resistance : tackling a crisis for the health and wealth of nations / the Review on Antimicrobial Resistance chaired by Jim O’Neill. Wellcome Collection. https://wellcomecollection.org/works/rdpck35v (accessed 2025-03-19).

Karaiskos, I.; Galani, I.; Daikos, G. L.; Giamarellou, H. Breaking Through Resistance: A Comparative Review of New Beta-Lactamase Inhibitors (Avibactam, Vaborbactam, Relebactam) Against Multidrug-Resistant Superbugs. Antibiotics (Basel) 2025, 14 (5), 528. https://doi.org/10.3390/antibiotics14050528.

Antimicrobials including antibiotics, antiseptics and antifungal agents - Scoping systematic review of treatments for eczema - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK363143/ (accessed 2025-05-30).

Hauser, A. R. Antibiotic Basics for Clinicians: The ABCs of Choosing the Right Antibacterial Agent; Lippincott Williams & Wilkins, 2012.

Just a moment... https://academic.oup.com/femsre/article/35/5/901/2680377?__cf_chl_rt_tk=y0kEajgfhVSRuVZc3c9oA0_.SjTyMFwdtQlmQKZmuBw-1742363137-1.0.1.1-w4HRiLrvBcJoTTtKWmQr1VhgQqa7vcVprBSwyZm2f4I (accessed 2025-03-19).

Tackling Drug-resistant Infections Globally: Final Report and Recommendations - Review on Antimicrobial Resistance - Google Books. https://books.google.co.in/books/about/Tackling_Drug_resistant_Infections_Globa.html?id=aa6lAQAACAAJ&redir_esc=y (accessed 2025-03-19).

Antimicrobial resistance : tackling a crisis for the health and wealth of nations / the Review on Antimicrobial Resistance chaired by Jim O’Neill. Wellcome Collection. https://wellcomecollection.org/works/rdpck35v (accessed 2025-03-19).

Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? | PLOS Medicine. https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002184 (accessed 2025-03-19).

NOAH responds to the O’Neill review - ProQuest. https://www.proquest.com/docview/1809928859?sourcetype=Scholarly%20Journals (accessed 2025-03-19).

Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed 2025-03-19).

Global action plan on antimicrobial resistance. https://www.who.int/publications/i/item/9789241509763 (accessed 2025-03-19).

New antimicrobial treatment options for severe Gram-negative infections. - Abstract - Europe PMC. https://europepmc.org/article/MED/35942725 (accessed 2025-05-30).

Abstract - Europe PMC. https://europepmc.org/article/MED/31847614 (accessed 2025-05-30).

Suay García, B.; Tarín Pelló, A.; Pérez Gracia, M. T. Antibiotic Resistant Bacteria : Current Situation and Treatment Options to Accelerate the Development of a New Antimicrobial Arsenal. 2022.

Alghuthaymi, M. A.; Hassan, A. A.; Kalia, A.; Sayed El Ahl, R. M. H.; El Hamaky, A. A. M.; Oleksak, P.; Kuca, K.; Abd-Elsalam, K. A. Antifungal Nano-Therapy in Veterinary Medicine: Current Status and Future Prospects. J Fungi (Basel) 2021, 7 (7), 494. https://doi.org/10.3390/jof7070494.

Breijyeh, Z.; Karaman, R. Design and Synthesis of Novel Antimicrobial Agents. Antibiotics (Basel) 2023, 12 (3), 628. https://doi.org/10.3390/antibiotics12030628.

(PDF) Schiff Bases: A Versatile Pharmacophore. https://www.researchgate.net/publication/258400219_Schiff_Bases_A_Versatile_Pharmacophore (accessed 2025-03-19).

Bellahcene, F.; Benarous, K.; Mermer, A.; Boulebd, H.; Serseg, T.; Linani, A.; Kaouka, A.; Yousfi, M.; Syed, A.; Elgorban, A. M.; Ozeki, Y.; Kawsar, S. M. A. Unveiling Potent Schiff Base Derivatives with Selective Xanthine Oxidase Inhibition: In Silico and in Vitro Approach. Saudi Pharmaceutical Journal 2024, 32 (5), 102062. https://doi.org/10.1016/j.jsps.2024.102062.

Ceramella, J.; Iacopetta, D.; Catalano, A.; Cirillo, F.; Lappano, R.; Sinicropi, M. S. A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. Antibiotics (Basel) 2022, 11 (2), 191. https://doi.org/10.3390/antibiotics11020191.

Wang, Y.; Zhang, H.; Shen, W.; He, P.; Zhou, Z. Effectiveness and Tolerability of Targeted Drugs for the Treatment of Metastatic Castration-Resistant Prostate Cancer: A Network Meta-Analysis of Randomized Controlled Trials. J Cancer Res Clin Oncol 2018, 144 (9), 1751–1768. https://doi.org/10.1007/s00432-018-2664-y.

(PDF) Therapeutic Potential of Oxadiazole or Furadiazole Containing Compounds. ResearchGate 2024. https://doi.org/10.1186/s13065-020-00721-2.

Alburquerque-González, B.; Bernabé-García, Á.; Bernabé-García, M.; Ruiz-Sanz, J.; López-Calderón, F. F.; Gonnelli, L.; Banci, L.; Peña-García, J.; Luque, I.; Nicolás, F. J.; Cayuela-Fuentes, M. L.; Luchinat, E.; Pérez-Sánchez, H.; Montoro-García, S.; Conesa-Zamora, P. The FDA-Approved Antiviral Raltegravir Inhibits Fascin1-Dependent Invasion of Colorectal Tumor Cells In Vitro and In Vivo. Cancers (Basel) 2021, 13 (4), 861. https://doi.org/10.3390/cancers13040861.

X-MOL. x-mol.net. https://www.x-mol.net/paper/article/1646808 (accessed 2025-03-20).

Das, G.; Shinde, D. B.; Kandambeth, S.; Biswal, B. P.; Banerjee, R. Mechanosynthesis of Imine, β-Ketoenamine, and Hydrogen-Bonded Imine-Linked Covalent Organic Frameworks Using Liquid-Assisted Grinding. Chem. Commun. 2014, 50 (84), 12615–12618. https://doi.org/10.1039/C4CC03389B.

Jayashankar, B.; Lokanath Rai, K. M.; Baskaran, N.; Sathish, H. S. Synthesis and Pharmacological Evaluation of 1,3,4-Oxadiazole Bearing Bis(Heterocycle) Derivatives as Anti-Inflammatory and Analgesic Agents. Eur J Med Chem 2009, 44 (10), 3898–3902. https://doi.org/10.1016/j.ejmech.2009.04.006.

Dwyer, T. S.; O’Brien, J. B.; Ptak, C. P.; LaVigne, J. E.; Flaherty, D. P.; Watts, V. J.; Roman, D. L. Protein-Protein Interaction-Based High Throughput Screening for Adenylyl Cyclase 1 Inhibitors: Design, Implementation, and Discovery of a Novel Chemotype. Front Pharmacol 2022, 13, 977742. https://doi.org/10.3389/fphar.2022.977742.

Khan, I.; Tantray, M. A.; Hamid, H.; Alam, M. S.; Kalam, A.; Dhulap, A. Synthesis of Benzimidazole Based Thiadiazole and Carbohydrazide Conjugates as Glycogen Synthase Kinase-3β Inhibitors with Anti-Depressant Activity. Bioorganic & Medicinal Chemistry Letters 2016, 26 (16), 4020–4024. https://doi.org/10.1016/j.bmcl.2016.06.084.

Tantray, M. A.; Khan, I.; Hamid, H.; Alam, M. S.; Dhulap, A.; Kalam, A. Synthesis of Benzimidazole-Based 1,3,4-Oxadiazole-1,2,3-Triazole Conjugates as Glycogen Synthase Kinase-3β Inhibitors with Antidepressant Activity in in Vivo Models. RSC Adv. 2016, 6 (49), 43345–43355. https://doi.org/10.1039/C6RA07273A.

(PDF) Invitro antioxidant and anti-diabetic evaluation of a polyherbal formulation. https://www.researchgate.net/publication/359274732_Invitro_antioxidant_and_anti-diabetic_evaluation_of_a_polyherbal_formulation (accessed 2025-03-20).

Zoumpoulakis, P.; Camoutsis, C.; Pairas, G.; Soković, M.; Glamočlija, J.; Potamitis, C.; Pitsas, A. Synthesis of Novel Sulfonamide-1,2,4-Triazoles, 1,3,4-Thiadiazoles and 1,3,4-Oxadiazoles, as Potential Antibacterial and Antifungal Agents. Biological Evaluation and Conformational Analysis Studies. Bioorg Med Chem 2012, 20 (4), 1569–1583. https://doi.org/10.1016/j.bmc.2011.12.031.

Johns, B. A.; Weatherhead, J. G.; Allen, S. H.; Thompson, J. B.; Garvey, E. P.; Foster, S. A.; Jeffrey, J. L.; Miller, W. H. 1,3,4-Oxadiazole Substituted Naphthyridines as HIV-1 Integrase Inhibitors. Part 2: SAR of the C5 Position. Bioorganic & Medicinal Chemistry Letters 2009, 19 (6), 1807–1810. https://doi.org/10.1016/j.bmcl.2009.01.089.

A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. https://www.mdpi.com/2079-6382/11/2/191 (accessed 2025-06-01).

Matela, G. Schiff Bases and Complexes: A Review on Anti-Cancer Activity. Anticancer Agents Med Chem 2020, 20 (16), 1908–1917. https://doi.org/10.2174/1871520620666200507091207.

Adhikari, S.; Nath, P.; Das, A.; Datta, A.; Baildya, N.; Duttaroy, A. K.; Pathak, S. A Review on Metal Complexes and Its Anti-Cancer Activities: Recent Updates from in Vivo Studies. Biomedicine & Pharmacotherapy 2024, 171, 116211. https://doi.org/10.1016/j.biopha.2024.116211.

Design, Synthesis, and Antitumor Biological Evaluation of Galaxamide and Its Analogs. https://www.mdpi.com/1420-3049/30/11/2362 (accessed 2025-05-30).

Lagorce, D.; Sperandio, O.; Galons, H.; Miteva, M. A.; Villoutreix, B. O. FAF-Drugs2: Free ADME/Tox Filtering Tool to Assist Drug Discovery and Chemical Biology Projects. BMC Bioinformatics 2008, 9, 396. https://doi.org/10.1186/1471-2105-9-396.

Virtual Screening for Identification of Dual Inhibitors against CDK4/6 and Aromatase Enzyme. https://www.mdpi.com/1420-3049/28/6/2490 (accessed 2025-05-30).

Kiruthiga, N. MOLECULAR MODELLING AND EVALUATION ON SYNTHESISED 2-PHENYL-2,3-DIHYDRO-4 H-CHROMAN-4-ONE CORE AGAINST OXIDATIVE STRESS. JMPAS 2021, 10 (6), 4060–4065. https://doi.org/10.22270/jmpas.V10I6.2557.

Dihydroneopterin aldolase - Wikipedia. https://en.wikipedia.org/wiki/Dihydroneopterin_aldolase (accessed 2025-05-30).

Gabedit—A graphical user interface for computational chemistry softwares - Allouche - 2011 - Journal of Computational Chemistry - Wiley Online Library. https://onlinelibrary.wiley.com/doi/10.1002/jcc.21600 (accessed 2025-05-30).

Free Download: BIOVIA Discovery Studio Visualizer - Dassault Systèmes. https://discover.3ds.com/discovery-studio-visualizer-download (accessed 2025-05-30).

Hron, R.; Jursic, B. S. Preparation of Substituted Semicarbazides from Corresponding Amines and Hydrazines via Phenyl Carbamates. Tetrahedron Letters 2014, 55 (9), 1540–1543. https://doi.org/10.1016/j.tetlet.2014.01.052.

(PDF) 5-Phenyl-1,3,4-oxadiazol-2-amine. https://www.researchgate.net/publication/232814357_5-Phenyl-134-oxadiazol-2-amine (accessed 2025-05-30).

Vogel, A. I. Textbook of Practical Organic Chemistry 5th Ed.

(PDF) The Role of Protocols in Facilitating the Activities of Regional Heads Secretariat at the Central Buton District. ResearchGate. https://doi.org/10.32628/IJSRSET2411135.

Kiehlbauch, J. A.; Hannett, G. E.; Salfinger, M.; Archinal, W.; Monserrat, C.; Carlyn, C. Use of the National Committee for Clinical Laboratory Standards Guidelines for Disk Diffusion Susceptibility Testing in New York State Laboratories. J Clin Microbiol 2000, 38 (9), 3341–3348. https://doi.org/10.1128/JCM.38.9.3341-3348.2000.

Downloads

Published

10-08-2025

Issue

Section

Research Articles

How to Cite

[1]
Komal vitthal Gadhe, Manoj G. Damale, Rashmi S. Chouthe, Harshali A. Takale, Santosh D. Shelke, and Mohd. Usman Mohhasiddique, “Design, Synthesis, Biological Evaluation and Molecular Dynamic Study of Oxadiazole Containing Some Novel Schiff Bases”, Int J Sci Res Chemi, vol. 10, no. 4, pp. 23–56, Aug. 2025, Accessed: Aug. 20, 2025. [Online]. Available: https://ijsrch.com/index.php/home/article/view/IJSRCH251054