Removal of Heavy Metal Ions from Wastewater using Nanotechnology: A Review

Authors

  • Amritpal Singh S Department of Physics, Guru Nanak College of Arts, Science & Commerce, Mumbai, Maharashtra, India Author
  • Sandhya Bharambhe Department of Physics, SIES Graduate School of Technology, Navi-Mumbai, Maharashtra, India Author
  • Pushpinder G. Bhatia Department of Physics, Guru Nanak College of Arts, Science & Commerce, Mumbai, Maharashtra, India Author

Keywords:

Nanomaterial’s, Heavy Metal Ions, Contamination, Magnetic nanoparticles, Wastewater, Adsorption

Abstract

Water pollution refers to the contamination of water sources by substances which make the water unusable for drinking, cooking, cleaning, swimming, and other activities. Pollutants include chemicals, trash, bacteria, and parasites. All these forms of pollution, directly or indirectly, make their way to water. Millions of people have lost their lives due to consumption of contaminated water. Due to rapid increase in population, development of new industries, there has been increase in water contamination. Major sources of water contaminants are in the form of organic pollutants, inorganic & biological pollutants. Inorganic pollutants include heavy metals like Pb, Cr, Cd, As, Cr, Hg etc. These heavy metals are harmful if consumed above their safety limits. Heavy metal-based industries have grown rapidly, and this has resulted in serious environmental problems with local dumping and wastewater from these industries. Nanotechnology is a rapidly expanding science with noteworthy outcomes in practically all areas of life. In recent years, active researchers are mostly interested in nanomaterials because of their distinctive characteristics, such as excellent reactivity and better catalysis. This review article, firstly, emphasizes on the methods employed for removal of Heavy Metal Ions from wastewater. Also, different types of nanomaterials used in the removal of Heavy Metal Ions & their future prospects are discussed further.

References

G. Amo-Duodu, E. Kweinor Tetteh, S. Rathilal, and M. N. Chollom, “Synthesis and characterization of magnetic nanoparticles: Biocatalytic effects on wastewater treatment,” Mater. Today Proc., vol. 62, pp. S79–S84, 2022, doi: 10.1016/j.matpr.2022.02.091.

A. S. Mahmoud, M. K. Mostafa, and R. W. Peters, “A prototype of textile wastewater treatment using coagulation and adsorption by Fe/Cu nanoparticles: Techno-economic and scaling-up studies,” Nanomater. Nanotechnol., vol. 11, pp. 1–21, 2021, doi: 10.1177/18479804211041181.

S. Ethaib, S. Al-Qutaifia, N. Al-Ansari, and S. L. Zubaidi, “Function of Nanomaterials in Removing Heavy Metals for Water and Wastewater Remediation: A Review,” Environ. - MDPI, vol. 9, no. 10, 2022, doi: 10.3390/environments9100123.

K. Gupta, P. Joshi, R. Gusain, and O. P. Khatri, “Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials,” Coord. Chem. Rev., vol. 445, p. 214100, 2021, doi: 10.1016/j.ccr.2021.214100.

J. Nikić et al., “Synthesis, characterization and application of magnetic nanoparticles modified with Fe-Mn binary oxide for enhanced removal of As(III) and As(V),” Environ. Technol. (United Kingdom), vol. 42, no. 16, pp. 2527–2539, 2021, doi: 10.1080/09593330.2019.1705919.

T. Patil, J. A. C. Eng, and B. B. T. Patil, “Journal of Advanced Wastewater Treatment Using Nanoparticles,” vol. 5, no. 3, 2015, doi: 10.4172/2090-4568.1000131.

F. M. Alzahrani, N. S. Alsaiari, K. M. Katubi, A. Amari, F. Ben Rebah, and M. A. Tahoon, “Synthesis of polymer-based magnetic nanocomposite for multi-pollutants removal from water,” Polymers (Basel)., vol. 13, no. 11, 2021, doi: 10.3390/polym13111742.

R. Ramadan, “Preparation, characterization and application of Ni-doped magnetite,” Appl. Phys. A Mater. Sci. Process., vol. 125, no. 9, pp. 1–8, 2019, doi: 10.1007/s00339-019-2887-z.

F. Almomani, R. Bhosale, M. Khraisheh, A. kumar, and T. Almomani, “Heavy metal ions removal from industrial wastewater using magnetic nanoparticles (MNP),” Appl. Surf. Sci., vol. 506, p. 144924, 2020, doi: 10.1016/j.apsusc.2019.144924.

K. Anbalagan, M. M. Kumar, J. S. Sudarsan, and S. Nithiyanantham, “Removal of heavy metal ions from industrial wastewater using magnetic nanoparticles,” J. Eng. Res., vol. 10, no. 4, pp. 59–71, 2022, doi: 10.36909/jer.6924.

M. F. Horst, M. Alvarez, and V. L. Lassalle, “Removal of heavy metals from wastewater using magnetic nanocomposites: Analysis of the experimental conditions,” Sep. Sci. Technol., vol. 51, no. 3, pp. 550–563, 2016, doi: 10.1080/01496395.2015.1086801.

A. Buccolieri et al., “Synthesis and Characterization of Mixed Iron-Manganese Oxide Nanoparticles and Their Application for Efficient Nickel Ion Removal from Aqueous Samples,” J. Anal. Methods Chem., vol. 2017, 2017, doi: 10.1155/2017/9476065.

Renu, M. Agarwal, and K. Singh, “Heavy metal removal from wastewater using various adsorbents: A review,” J. Water Reuse Desalin., vol. 7, no. 4, pp. 387–419, 2017, doi: 10.2166/wrd.2016.104.

M. A. Tahoon, S. M. Siddeeg, N. S. Alsaiari, W. Mnif, and F. Ben Rebah, “E ff ective Heavy Metals Removal from Water Using Nanomaterials : A Review,” pp. 1–24.

M. O. Usman, G. Aturagaba, M. Ntale, and G. W. Nyakairu, “A review of adsorption techniques for removal of phosphates from wastewater,” Water Sci. Technol., vol. 86, no. 12, pp. 3113–3132, 2022, doi: 10.2166/wst.2022.382.

Y. Tao, C. Zhang, T. Lü, and H. Zhao, “Removal of Pb(II) ions from wastewater by using polyethyleneimine-functionalized Fe3O4 magnetic nanoparticles,” Appl. Sci., vol. 10, no. 3, 2020, doi: 10.3390/app10030948.

S. M. Ansari et al., “Eco-Friendly Synthesis, Crystal Chemistry, and Magnetic Properties of Manganese-Substituted CoFe2O4Nanoparticles,” ACS Omega, vol. 5, no. 31, pp. 19315–19330, 2020, doi: 10.1021/acsomega.9b02492.

C. Nilsson, C. Nilsson, R. Lakshmanan, and G. Renman, “Efficacy of reactive mineral-based sorbents forphosphate , bacteria , nitrogen and TOC removal- Column experiment in recirculation batch mode Efficacy of reactive mineral-based sorbents for phosphate , bacteria , nitrogen and TOC removal e Column experime,” Water Res., no. May 2014, 2013, doi: 10.1016/j.watres.2013.05.056.

A. Singh, S. Chaudhary, and B. S. Dehiya, “Fast removal of heavy metals from water and soil samples using magnetic Fe 3 O 4 nanoparticles,” 2020.

M. Ul-Islam et al., “Current advancements of magnetic nanoparticles in adsorption and degradation of organic pollutants,” Environ. Sci. Pollut. Res., vol. 24, no. 14, pp. 12713–12722, 2017, doi: 10.1007/s11356-017-8765-3.

K. Singh, N. A. Renu, and M. Agarwal, “Methodologies for removal of heavy metal ions from wastewater: an overview,” Interdiscip. Environ. Rev., vol. 18, no. 2, p. 124, 2017, doi: 10.1504/ier.2017.10008828.

V. Dhiman and N. Kondal, “ZnO Nanoadsorbents: A potent material for removal of heavy metal ions from wastewater,” Colloids Interface Sci. Commun., vol. 41, no. October 2020, p. 100380, 2021, doi: 10.1016/j.colcom.2021.100380.

S. Singh Rathore, S. Tejasvi, and V. Gupta, “Elimination of Heavy Metal Ions from Industrial Wastewater: A Review,” Eur. Chem. Bull, vol. 2023, no. 1, pp. 1052–1065.

N. Ghosh, S. Das, G. Biswas, and P. K. Haldar, “Review on some metal oxide nanoparticles as effective adsorbent in wastewater treatment,” vol. 85, no. 12, pp. 3370–3395, 2022, doi: 10.2166/wst.2022.153.

G. H. Chala, “Review on Green Synthesis of Iron-Based Nanoparticles for Environmental Applications,” J. Chem. Rev, vol. 5, no. 1, pp. 1–14, 2023, [Online]. Available: https://doi.org/10.22034/JCR.2023.356745.1184

F. S. A. Khan et al., “Magnetic nanoparticles incorporation into different substrates for dyes and heavy metals removal—A Review,” Environ. Sci. Pollut. Res., vol. 27, no. 35, pp. 43526–43541, 2020, doi: 10.1007/s11356-020-10482-z.

R. Asadi, H. Abdollahi, M. Gharabaghi, and Z. Boroumand, “Effective removal of Zn (II) ions from aqueous solution by the magnetic MnFe2O4 and CoFe2O4 spinel ferrite nanoparticles with focuses on synthesis, characterization, adsorption, and desorption,” Adv. Powder Technol., vol. 31, no. 4, pp. 1480–1489, 2020, doi: 10.1016/j.apt.2020.01.028.

F. Asghar and A. Mushtaq, “The Future of Nanomaterial in Wastewater Treatment: A Review,” Int. J. Chem. Biochem. Sci., vol. 23, no. 1, pp. 150–157, 2023.

M. K. Bharti, S. Gupta, S. Chalia, I. Garg, P. Thakur, and A. Thakur, “Potential of Magnetic Nanoferrites in Removal of Heavy Metals from Contaminated Water: Mini Review,” J. Supercond. Nov. Magn., vol. 33, no. 12, pp. 3651–3665, 2020, doi: 10.1007/s10948-020-05657-1.

A. Predescu, E. Matei, A. Berbecaru, and R. Vidu, “Synthesis of Magnetic Nanoparticles for the removal of heavy metal ions from wastewaters,” Proc. 38th Annu. Congr. ARA, no. JULY 2014, pp. 37–42, 2015, doi: 10.14510/araproc.v0i0.1270.

S. M. Abdelbasir and A. E. Shalan, “An overview of nanomaterials for industrial wastewater treatment,” Korean J. Chem. Eng., vol. 36, no. 8, pp. 1209–1225, 2019, doi: 10.1007/s11814-019-0306-y.

T. D. Chaemiso, “Removal Methods of Heavy Metals from Laboratory Wastewater,” J. Nat. Sci. Res., vol. 9, no. 2, pp. 36–42, 2019, doi: 10.7176/jnsr/9-2-04.

G. N. Hlongwane, P. T. Sekoai, M. Meyyappan, and K. Moothi, “Simultaneous removal of pollutants from water using nanoparticles: A shift from single pollutant control to multiple pollutant control,” Sci. Total Environ., vol. 656, pp. 808–833, 2019, doi: 10.1016/j.scitotenv.2018.11.257.

Y. Zhang et al., “Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles,” Chem. Eng. J., vol. 372, no. April, pp. 82–91, 2019, doi: 10.1016/j.cej.2019.04.111.

R. Lakshmanan, C. Okoli, M. Boutonnet, S. Järås, and G. K. Rajarao, “Effect of magnetic iron oxide nanoparticles in surface water treatment: Trace minerals and microbes,” Bioresour. Technol., vol. 129, pp. 612–615, 2013, doi: 10.1016/j.biortech.2012.12.138.

F. Parvin, S. M. Tareq, and S. Y. Rikta, Application of Nanomaterials for the Removal of Heavy Metal From Wastewater. Elsevier Inc., 2019. doi: 10.1016/B978-0-12-813902-8.00008-3.

J. M. Arana Juve, F. M. S. Christensen, Y. Wang, and Z. Wei, “Electrodialysis for metal removal and recovery: A review,” Chem. Eng. J., vol. 435, no. P2, p. 134857, 2022, doi: 10.1016/j.cej.2022.134857.

R. Vidu, E. Matei, A. M. Predescu, and B. Alhalaili, “Removal of Heavy Metals from Wastewaters :,” pp. 1–37, 2020.

T. A. Aragaw, F. M. Bogale, and B. A. Aragaw, “Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms,” J. Saudi Chem. Soc., vol. 25, no. 8, p. 101280, 2021, doi: 10.1016/j.jscs.2021.101280.

M. P. Ajith, E. Priyadarshini, and P. Rajamani, “Effective and selective removal of heavy metals from industrial effluents using sustainable Si–CD conjugate based column chromatography,” Bioresour. Technol., vol. 314, p. 123786, 2020, doi: 10.1016/j.biortech.2020.123786.

V. K. Yadav, A. Amari, S. G. Wanale, H. Osman, and M. H. Fulekar, “Synthesis of Floral-Shaped Nanosilica from Coal Fly Ash and Its Application for the Remediation of Heavy Metals from Fly Ash Aqueous Solutions,” Sustain., vol. 15, no. 3, 2023, doi: 10.3390/su15032612.

G. F. Stiufiuc and R. I. Stiufiuc, “Magnetic Nanoparticles: Synthesis, Characterization, and Their Use in Biomedical Field,” Appl. Sci., vol. 14, no. 4, p. 1623, 2024, doi: 10.3390/app14041623.

D. Sahu, “REVIEW ARTICLE A Comprehensive Review on the Applications of ZnO Nanostructures Mechanisms,” vol. 12, no. 67, pp. 33353–33360, 2021.

N. Akhlaghi and G. Najafpour-Darzi, “Manganese ferrite (MnFe2O4) Nanoparticles: From synthesis to application -A review,” J. Ind. Eng. Chem., vol. 103, pp. 292–304, 2021, doi: 10.1016/j.jiec.2021.07.043.

A. Kaur and S. Sharma, “Removal of Heavy Metals from Waste Water by using Various Adsorbents- A Review,” Indian J. Sci. Technol., vol. 10, no. 34, pp. 1–14, 2017, doi: 10.17485/ijst/2017/v10i34/117269.

S. V, “Applications of iron oxide nano composite in waste water treatment–dye decolourisation and anti‒microbial activity,” MOJ Drug Des. Dev. Ther., vol. 2, no. 5, pp. 178–184, 2018, doi: 10.15406/mojddt.2018.02.00058.

Y. Fei and Y. H. Hu, “Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: a review,” J. Mater. Chem. A, vol. 10, no. 3, pp. 1047–1085, 2022, doi: 10.1039/d1ta06612a.

C. Sivaraman, S. Vijayalakshmi, E. Leonard, S. Sagadevan, and R. Jambulingam, “Current Developments in the Effective Removal of Environmental Pollutants through Photocatalytic Degradation Using Nanomaterials,” Catalysts, vol. 12, no. 5, 2022, doi: 10.3390/catal12050544.

R. Kumar and J. Chawla, “Removal of Cadmium Ion from Water/Wastewater by Nano-metal Oxides: A Review,” Water Qual. Expo. Heal., vol. 5, no. 4, pp. 215–226, 2014, doi: 10.1007/s12403-013-0100-8.

E. C. Nnadozie and P. A. Ajibade, “Multifunctional magnetic oxide nanoparticle (MNP) core-shell: Review of synthesis, structural studies and application for wastewater treatment,” Molecules, vol. 25, no. 18, 2020, doi: 10.3390/molecules25184110.

S. Wadhawan, A. Jain, J. Nayyar, and S. K. Mehta, “Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review,” J. Water Process Eng., vol. 33, no. October 2019, p. 101038, 2020, doi: 10.1016/j.jwpe.2019.101038.

N. Elboughdiri, “The use of natural zeolite to remove heavy metals Cu (II), Pb (II) and Cd (II), from industrial wastewater,” Cogent Eng., vol. 7, no. 1, 2020, doi: 10.1080/23311916.2020.1782623.

Ž. Z. Tasić, G. D. Bogdanović, and M. M. Antonijević, “Application of natural zeolite in wastewater treatment: A review,” J. Min. Metall. A Min., vol. 55, no. 1, pp. 67–79, 2019, doi: 10.5937/jmma1901067t.

T. P. Belova, “Adsorption of heavy metal ions (Cu2+, Ni2+, Co2+ and Fe2+) from aqueous solutions by natural zeolite,” Heliyon, vol. 5, no. 9, p. e02320, 2019, doi: 10.1016/j.heliyon.2019.e02320.

Z. Cheng, A. L. K. Tan, Y. Tao, D. Shan, K. E. Ting, and X. J. Yin, “Synthesis and characterization of iron oxide nanoparticles and applications in the removal of heavy metals from industrial wastewater,” Int. J. Photoenergy, vol. 2012, 2012, doi: 10.1155/2012/608298.

D. Stanicki, L. Vander Elst, R. N. Muller, and S. Laurent, “Synthesis and processing of magnetic nanoparticles,” Curr. Opin. Chem. Eng., vol. 8, pp. 7–14, 2015, doi: 10.1016/j.coche.2015.01.003.

S. Nizamuddin et al., Iron Oxide Nanomaterials for the Removal of Heavy Metals and Dyes From Wastewater. Elsevier Inc., 2019. doi: 10.1016/B978-0-12-813926-4.00023-9.

A. Farhan et al., “Removal of Toxic Metals from Water by Nanocomposites through Advanced Remediation Processes and Photocatalytic Oxidation,” Curr. Pollut. Reports, vol. 9, no. 3, pp. 338–358, 2023, doi: 10.1007/s40726-023-00253-y.

N. A. A. Qasem, R. H. Mohammed, and D. U. Lawal, “Removal of heavy metal ions from wastewater: a comprehensive and critical review,” npj Clean Water, vol. 4, no. 1, 2021, doi: 10.1038/s41545-021-00127-0.

I. Elghamry, M. Gouda, and Y. S. S. Al-Fayiz, “Synthesis of Chemically Modified Acid-Functionalized Multiwall Carbon Nanotubes with Benzimidazole for Removal of Lead and Cadmium Ions from Wastewater,” Polymers (Basel)., vol. 15, no. 6, 2023, doi: 10.3390/polym15061421.

A. M. Adam et al., “Pb ( II ), Cd ( II ) and Sn ( II ) Heavy Metals from Wastewater Using Novel Metal – Carbon-Based Composites,” Crystals, vol. 11, no. Ii, p. 882, 2021.

M. R. Abukhadra, B. M. Bakry, A. Adlii, S. M. Yakout, and M. A. El-Zaidy, “Facile conversion of kaolinite into clay nanotubes (KNTs) of enhanced adsorption properties for toxic heavy metals (Zn2+, Cd2+, Pb2+, and Cr6+) from water,” J. Hazard. Mater., vol. 374, no. April, pp. 296–308, 2019, doi: 10.1016/j.jhazmat.2019.04.047.

A. Dhillon and D. Kumar, New Generation Nano-Based Adsorbents for Water Purification. Elsevier Inc., 2019. doi: 10.1016/B978-0-12-813926-4.00036-7.

L. Jiao, H. Feng, and N. Chen, “Halloysite@polydopamine/ZIF-8 Nanocomposites for Efficient Removal of Heavy Metal Ions,” J. Chem., vol. 2023, 2023, doi: 10.1155/2023/7182712.

C. I. Covaliu-Mierlă, O. Păunescu, and H. Iovu, “Recent Advances in Membranes Used for Nanofiltration to Remove Heavy Metals from Wastewater: A Review,” Membranes (Basel)., vol. 13, no. 7, 2023, doi: 10.3390/membranes13070643.

I. H. Alsohaimi et al., “Chitosan Polymer Functionalized-Activated Carbon/Montmorillonite Composite for the Potential Removal of Lead Ions from Wastewater,” Polymers (Basel)., vol. 15, no. 9, 2023, doi: 10.3390/polym15092188.

N. Meky, E. Salama, M. F. Soliman, S. G. Naeem, M. Ossman, and M. Elsayed, “Synthesis of Nano-silica Oxide for Heavy Metal Decontamination from Aqueous Solutions,” Water. Air. Soil Pollut., vol. 235, no. 2, pp. 1–30, 2024, doi: 10.1007/s11270-024-06944-6.

A. Jamshed, A. Iqbal, S. Ali, S. Ali, and . M., “A quick review on the applications of nanomaterials as adsorbents,” MOJ Ecol. Environ. Sci., vol. 8, no. 3, pp. 86–89, 2023, doi: 10.15406/mojes.2023.08.00278.

W. S. Chai et al., “A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application,” J. Clean. Prod., vol. 296, p. 126589, 2021, doi: 10.1016/j.jclepro.2021.126589.

D. T. K. Dung, T. H. Hai, L. H. Phuc, B. D. Long, L. K. Vinh, and P. N. Truc, “Preparation and characterization of magnetic nanoparticles with chitosan coating,” J. Phys. Conf. Ser., vol. 187, 2009, doi: 10.1088/1742-6596/187/1/012036.

Y. Wei, B. Han, X. Hu, and Y. Lin, “Procedia Engineering Synthesis of Fe 3 O 4 nanoparticles and their magnetic properties,” vol. 00, no. 2011, pp. 0–5, 2012, doi: 10.1016/j.proeng.2011.12.498.

R. Lakshmanan, Application of Magnetic nanoparticles and reactive filter materials for wastewater treatment, Doctoral thesis, no. December. 2013.

D. H. K. Reddy and Y. S. Yun, “Spinel ferrite magnetic adsorbents: Alternative future materials for water purification?,” Coord. Chem. Rev., vol. 315, pp. 90–111, 2016, doi: 10.1016/j.ccr.2016.01.012.

R. M R et al., “Carbonaceous MnFe2O4 nano-adsorbent: Synthesis, characterisation and investigations on chromium (VI) ions removal efficiency from aqueous solution,” Appl. Surf. Sci. Adv., vol. 16, no. January, p. 100434, 2023, doi: 10.1016/j.apsadv.2023.100434.

A. F. P. Allwin Mabes Raj et al., “Superparamagnetic Spinel-Ferrite Nano-Adsorbents Adapted for Hg2+, Dy3+, Tb3+ Removal/Recycling: Synthesis, Characterization, and Assessment of Toxicity,” Int. J. Mol. Sci., vol. 24, no. 12, 2023, doi: 10.3390/ijms241210072.

S. G. Muntean, L. Halip, M. A. Nistor, and C. Păcurariu, “Removal of Metal Ions via Adsorption Using Carbon Magnetic Nanocomposites: Optimization through Response Surface Methodology, Kinetic and Thermodynamic Studies,” Magnetochemistry, vol. 9, no. 7, 2023, doi: 10.3390/magnetochemistry9070163.

M. M. Arman, “Novel multiferroic nanoparticles Sm1−xHoxFeO3 as a heavy metal Cr6+ ion removal from water,” Appl. Phys. A Mater. Sci. Process., vol. 129, no. 6, 2023, doi: 10.1007/s00339-023-06666-2.

R. Lakshmanan and G. Kuttuva Rajarao, “Effective water content reduction in sewage wastewater sludge using magnetic nanoparticles,” Bioresour. Technol., vol. 153, pp. 333–339, 2014, doi: 10.1016/j.biortech.2013.12.003.

A. You, M. Be, and I. In, “Co-precipitation Synthesis of Magnetic Nanoparticles for,” no. December 2016, 2023.

J. Kong, K. Coolahan, and A. Mugweru, “Manganese based magnetic nanoparticles for heavy metal detection and environmental remediation,” Anal. Methods, vol. 5, no. 19, pp. 5128–5133, 2013, doi: 10.1039/c3ay40359a.

S. Shukla, R. Khan, and A. Daverey, “Environmental Technology & Innovation Synthesis and characterization of magnetic nanoparticles , and their applications in wastewater treatment : A review,” Environ. Technol. Innov., vol. 24, p. 101924, 2021, doi: 10.1016/j.eti.2021.101924.

C. Liosis, A. Papadopoulou, E. Karvelas, T. E. Karakasidis, and I. E. Sarris, “Heavy metal adsorption using magnetic nanoparticles for water purification: A critical review,” Materials (Basel)., vol. 14, no. 24, 2021, doi: 10.3390/ma14247500.

T. Naseem and T. Durrani, “Environmental Chemistry and Ecotoxicology The role of some important metal oxide nanoparticles for wastewater and antibacterial applications : A review,” Environ. Chem. Ecotoxicol., vol. 3, pp. 59–75, 2021, doi: 10.1016/j.enceco.2020.12.001.

C. Santhosh, E. Dhaneshvar, A. Bhatnagar, A. Malathi, J. Madhavan, and A. N. Grace, Iron Oxide Nanomaterials for Water Purification. Elsevier Inc., 2019. doi: 10.1016/B978-0-12-813926-4.00022-7.

R. Goyat, Y. Saharan, J. Singh, A. Umar, and S. Akbar, “Synthesis of Graphene-Based Nanocomposites for Environmental Remediation Applications: A Review,” Molecules, vol. 27, no. 19, pp. 1–34, 2022, doi: 10.3390/molecules27196433.

E. F. Joel and G. Lujanienė, “Progress in Graphene Oxide Hybrids for Environmental Applications,” Environ. - MDPI, vol. 9, no. 12, 2022, doi: 10.3390/environments9120153.

H. Chen, F. Liu, C. Cai, H. Wu, and L. Yang, “Removal of Hg2+ from desulfurization wastewater by tannin-immobilized graphene oxide,” Environ. Sci. Pollut. Res., vol. 29, no. 12, pp. 17964–17976, 2022, doi: 10.1007/s11356-021-16993-7.

P. G. Krishna et al., “Photocatalytic Activity Induced by Metal Nanoparticles Synthesized by Sustainable Approaches: A Comprehensive Review,” Front. Chem., vol. 10, no. September, pp. 1–21, 2022, doi: 10.3389/fchem.2022.917831.

C. Martinez-Boubeta and K. Simeonidis, Magnetic Nanoparticles for Water Purification. Elsevier Inc., 2019. doi: 10.1016/B978-0-12-813926-4.00026-4.

S. Mustapha et al., Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review, vol. 10, no. 1. Springer International Publishing, 2020. doi: 10.1007/s13201-019-1138-y.

J. Jiang et al., “We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %,” Intech, vol. 34, no. 8, pp. 57–67, 2010, [Online]. Available: https://doi.org/10.1007/s12559-021-09926-6%0Ahttps://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics%0Ahttp://dx.doi.org/10.1016/j.compmedimag.2010.07.003

V. Anggraini, R. A. Putra, and T. A. Fadlly, “ Synthesis and Characterization of Manganese Ferrite (MnFe 2 O 4 ) Nanoparticles by Coprecipitation Method at Low Temperatures ,” Proc. 2nd Int. Conf. Sci. Technol. Mod. Soc. (ICSTMS 2020), vol. 576, no. Icstms 2020, pp. 118–122, 2021, doi: 10.2991/assehr.k.210909.028.

N. Bich, T. Tran, N. B. Duong, and N. L. Le, “Synthesis and Characterization of Magnetic Fe 3 O 4 / Zeolite NaA Nanocomposite for the Adsorption Removal of Methylene Blue Potential in Wastewater Treatment,” vol. 2021, 2021.

F. Y. Zhao, Y. L. Li, and L. H. Li, “Preparation and characterization of magnetite nanoparticles,” Appl. Mech. Mater., vol. 618, no. May, pp. 24–27, 2014, doi: 10.4028/www.scientific.net/AMM.618.24.

L. Thi Mong Thy et al., “Fabrication of manganese ferrite/graphene oxide nanocomposites for removal of nickel ions, methylene blue from water,” Chem. Phys., vol. 533, p. 110700, 2020, doi: 10.1016/j.chemphys.2020.110700.

A. Najafpoor et al., “Effect of magnetic nanoparticles and silver-loaded magnetic nanoparticles on advanced wastewater treatment and disinfection,” J. Mol. Liq., vol. 303, p. 112640, 2020, doi: 10.1016/j.molliq.2020.112640.

G. K. Salman, A. J. Bohan, and G. M. Jaed, “Use of Nano-Magnetic Material for Removal of Heavy Metals from Wastewater,” Eng. Technol. J., vol. 35, no. 9, pp. 903–908, 2017, doi: 10.30684/etj.35.9a.6.

R. K. Gautam and M. C. Chattopadhyaya, “Functionalized Magnetic Nanoparticles: Adsorbents and Applications,” Nanomater. Wastewater Remediat., pp. 139–159, 2016, doi: 10.1016/b978-0-12-804609-8.00007-8.

M. Mantovani, E. Collina, M. Lasagni, F. Marazzi, and V. Mezzanotte, “Production of microalgal-based carbon encapsulated iron nanoparticles (ME-nFe) to remove heavy metals in wastewater,” Environ. Sci. Pollut. Res., vol. 30, no. 3, pp. 6730–6745, 2023, doi: 10.1007/s11356-022-22506-x.

M. Marganovici et al., “Hybrid Coordination Networks for Removal of Pollutants from Wastewater,” Int. J. Mol. Sci., vol. 23, no. 20, 2022, doi: 10.3390/ijms232012611.

W. A. Review, A. A. Yaqoob, T. Parveen, and K. Umar, “Role of Nanomaterials in the Treatment of,” 2020.

H. B. Desai, L. J. Hathiya, H. H. Joshi, and A. R. Tanna, “Synthesis and characterization of photocatalytic MnFe2O4 nanoparticles,” Mater. Today Proc., vol. 21, pp. 1905–1910, 2020, doi: 10.1016/j.matpr.2020.01.248.

N. K. Balali-Mood M, K. S. M. (2021) Tahergorabi Z, F. P. 12:643972., and D. 10.3389/fphar.2021.643972, “No Title”.

M. Zaim, A. Zaimee, and M. S. Sarjadi, “Heavy Metals Removal from Water by Efficient Adsorbents,” 2021.

A. Mudhoo and M. Sillanpää, “Magnetic nanoadsorbents for micropollutant removal in real water treatment : a review,” Environ. Chem. Lett., no. 0123456789, 2021, doi: 10.1007/s10311-021-01289-6.

H. Sadegh and G. A. M. Ali, “Potential Applications of Nanomaterials in Wastewater Treatment,” no. June, pp. 51–61, 2018, doi: 10.4018/978-1-5225-5754-8.ch004.

R. Pirarath, P. Shivashanmugam, A. Syed, A. M. Elgorban, S. Anandan, and M. Ashokkumar, “Mercury removal from aqueous solution using petal-like MoS2 nanosheets,” Front. Environ. Sci. Eng., vol. 15, no. 1, pp. 1–10, 2021, doi: 10.1007/s11783-020-1307-0.

Downloads

Published

07-05-2025

Issue

Section

Research Articles

Similar Articles

You may also start an advanced similarity search for this article.